Graphene鈥揊erroelectric Hybrid Structure for Flexible Transparent Electrodes
详细信息    查看全文
文摘
Graphene has exceptional optical, mechanical, and electrical properties, making it an emerging material for novel optoelectronics, photonics, and flexible transparent electrode applications. However, the relatively high sheet resistance of graphene is a major constraint for many of these applications. Here we propose a new approach to achieve low sheet resistance in large-scale CVD monolayer graphene using nonvolatile ferroelectric polymer gating. In this hybrid structure, large-scale graphene is heavily doped up to 3 脳 1013 cm鈥? by nonvolatile ferroelectric dipoles, yielding a low sheet resistance of 120 惟/鈻?at ambient conditions. The graphene鈥揻erroelectric transparent conductors (GFeTCs) exhibit more than 95% transmittance from the visible to the near-infrared range owing to the highly transparent nature of the ferroelectric polymer. Together with its excellent mechanical flexibility, chemical inertness, and the simple fabrication process of ferroelectric polymers, the proposed GFeTCs represent a new route toward large-scale graphene-based transparent electrodes and optoelectronics.

Keywords:

CVD graphene; ferroelectric polymer gating; sheet resistance; high transparency; mechanical flexibility; charged impurity scattering

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700