用户名: 密码: 验证码:
Nitric Oxide (NO) Cleavable Biomimetic Thermoresponsive Double Hydrophilic Diblock Copolymer with Tunable LCST
详细信息    查看全文
文摘
The fabrication of responsive biomimetic polymers that can respond to externally applied stimuli has received considerable attention over the past few years due to the variety of potential applications. Herein, we report a convenient method to fabricate a thermoresponsive diblock copolymer that is sensitive to a biological messenger molecule, nitric oxide (NO). A well-defined thermoresponsive double hydrophilic block copolymer (DHBC) of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) was initially synthesized via atom radical transfer polymerization (ATRP) using a PEG-Cl macroinitiator including an o-nitroaniline motif. The o-nitroaniline derivative was subjected to reduction in the presence of a reducing agent (zinc powder), yielding DHBC with a single amide-functionalized o-phenylenediamine moiety (an efficient NO-reactive group) at the chain junction point. Upon addition of a near equivalent amount of NO (relative to the o-phenylenediamine residues), the o-phenylenediamine groups were transformed to benzotriazoles, resulting in spontaneous hydrolysis (as confirmed by UV鈥搗is and GPC measurements). This resulted in scission of the original diblock copolymers and therefore a substantial decrease in the lower critical solution temperature (LCST) (due to the loss of the hydrophilic PEG chains). NO-triggered cleavage of the hydrophilic block of a DHBC may have potential application in NO-mediated drug release.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700