Dissociation Behavior of C2H6 Hydrate at Temperatures below the Ice Point: Melting to Liquid Water Followed by Ice Nucleation
详细信息    查看全文
文摘
The dissociation of C2H6 hydrate particles by slow depressurization at temperatures slightly below the ice melting point was studied using optical microscopy and Raman spectroscopy. Visual observations and Raman measurements revealed that ethane hydrates can be present as a metastable state at pressures lower than the dissociation pressures of the three components: ice, hydrate, and free gas. However, they decompose into liquid water and gas phases once the system pressure drops to the equilibrium boundary for supercooled water, hydrate, and free gas. Structural analyses of obtained Raman spectra indicate that structures of the metastable hydrates and liquid water from the hydrate decay are fundamentally identical to those of the stable hydrates and supercooled water without experience of the hydration. These results imply a considerably high energy barrier for the direct hydrate-to-ice transition. Water solidification, probably induced by dynamic nucleation, was also observed during melting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700