Mechanism of Photocatalytic Reduction of CO2 by Re(bpy)(CO)3Cl from Differences in Carbon Isotope Discrimination
详细信息    查看全文
文摘
The rhenium complex Re(bpy)(CO)3Cl (1, bpy = 2,2′-bipyridine) catalyzes CO2 reduction to CO in mixtures containing triethanolamine (TEOA) as a sacrificial reductant. The mechanism of this reaction under photocatalytic conditions remains to be fully characterized. Here, we report the competitive carbon kinetic isotope effects (13C KIEs) on photocatalytic CO2 reduction by 1 and analyze the results of experimental measurements by comparing with computed KIEs via density functional theory (DFT) calculations as a means of formulating a chemical mechanism and illustrating the utility of this approach. The 13C KIEs, k(12C)/k(13C), in acetonitrile (ACN) and dimethylformamide (DMF) were determined to be 1.0718 ± 0.0036 and 1.0685 ± 0.0075, respectively. When [Ru(bpy)3]Cl2 is added to the reaction mixture in acetonitrile as a photosensitizer, the reduction of CO2 exhibited a 13C KIE = 1.0703 ± 0.0043. These values are consistent with the calculated isotope effect of CO2 binding to the one-electron reduced [ReI(bpy•–)(CO)3] species. The findings reported here provide strong evidence that the reactions in the two different solvents have the same first irreversible step and proceed with similar reactive intermediates upon reduction. Theoretically, we found that the major contribution for the large 13C isotope effects comes from a dominant zero-point energy (ZPE) term. These results lay the groundwork for combined experimental and theoretical approaches for analysis of competitive isotope effects toward understanding CO2 reduction catalyzed by other complexes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700