Effect of the Structure and Length of Flexible Chains on Dendrimers Grafted Fe3O4@SiO2/PAMAM Magnetic Nanocarriers for Lipase Immobilization
详细信息    查看全文
文摘
Polyamidoamine (PAMAM) dendrimers have been widely applied in biomacromolecule immobilization, catalysis carriers, gene therapy, and drug delivery. However, there is still a lack of systematic research about lipase and protein immobilized by PAMAM dendrimers. Herein, we used three types of amine reagents to graft dendritic macromolecules on Fe3O4 nanoparticles and obtained a variety of Fe3O4@SiO2/PAMAM magnetic nanocarriers with different generations. The density of surface functional groups, the structure, and the length (generation) of the flexible chain play an important role in immobilizing Candida rugosa lipase (CRL). As a result, hexamethylenediamine (HMD) grafted dendritic magnetic carriers with the fourth generation (Gc-4) exhibited a superior performance in terms of immobilizing CRL. Then, polyethylenimine (PEI) instead of HMD was grafted to the Gc-4 to obtain a higher activity with respect to immobilized CRL (955.53 U/g) and free lipase. Furthermore, the immobilized CRL improved its tolerability performance in wider ranges of pH and temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700