Alkyl Chain Length and Temperature Effects on Structural Properties of Pyrrolidinium-Based Ionic Liquids: A Combined Atomistic Simulation and Small-Angle X-ray Scattering Study
详细信息    查看全文
文摘
Molecular dynamics (MD) simulations of 1-alkyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([CnMPy][Tf2N], n = 3, 4, 6, 8, 10) were conducted using an all-atom model. Radial distribution functions (RDF) were computed and structure functions were generated to compare with new X-ray scattering experimental results, reported herein. The scattering peaks in the structure functions generally shift to lower Q values with increased temperature for all the liquids in this series. However, the first sharp diffraction peak (FSDP) in the longer alkyl chain liquids displays a marked shift to higher Q values with increasing temperature. Alkyl chain-dependent ordering of the polar groups and increased tail aggregation with increasing alkyl chain length were observed in the partial pair correlation functions and the structure functions. The reasons for the observed alkyl chain-dependent phenomena and temperature effects were explored.

Keywords:

ionic liquids; radial distribution function; structure function; partial structure function; FSDP; tail aggregation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700