Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies
详细信息    查看全文
文摘
Devices that manipulate light represent the future of information processing. Flat optics and structures with subwavelength periodic features (metasurfaces) provide compact and efficient solutions. The key bottleneck is efficiency, and replacing metallic resonators with dielectric resonators has been shown to significantly enhance performance. To extend the functionalities of dielectric metasurfaces to real-world optical applications, the ability to tune their properties becomes important. In this article, we present a mechanically tunable all-dielectric metasurface. This is composed of an array of dielectric resonators embedded in an elastomeric matrix. The optical response of the structure under a uniaxial strain is analyzed by mechanical–electromagnetic co-simulations. It is experimentally demonstrated that the metasurface exhibits remarkable resonance shifts. Analysis using a Lagrangian model reveals that strain modulates the near-field mutual interaction between resonant dielectric elements. The ability to control and alter inter-resonator coupling will position dielectric metasurfaces as functional elements of reconfigurable optical devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700