Enhanced Current Transport and Injection in Thin-Film Gallium-Nitride Light-Emitting Diodes by Laser-Based Doping
详细信息    查看全文
文摘
This paper reports improvements in the electrical and optical properties of blue-emission gallium nitride (GaN)-based thin-film light-emitting diodes (TFLEDs) after laser-based Si doping (LBSD) of a nitrogen-face n-GaN (denoted as hereafter n-GaN) layer. Experimental results show that the light-output powers of the flat- and rough-surface TFLEDs after LBSD are 52.1 and 11.35% higher than those before LBSD, respectively, at a current of 350 mA, while the corresponding operating voltages are decreased by 0.22 and 0.28 V for the flat- and rough-surface TFLEDs after LBSD, respectively. The reduced operating voltage after LBSD of the top n-GaN layer may result from the remarkably decreased specific contact resistance at the metal/n-GaN interface and the low series resistance of the TFLED device. The LBSD of n-GaN increases the number of nitrogen vacancies, and Si substitutes for Ga (SiGa) at the metal/n-GaN interface to produce highly Si-doped regions in n-GaN, leading to a decrease in the Schottky barrier height and width. As a result, the specific contact resistances are significantly decreased to 1.56 脳 10鈥? and 2.86 脳 10鈥? 惟 cm2 for the flat- and rough-surface samples after LBSD, respectively. On the other hand, the increased light-output power after LBSD can be explained by the uniform current spreading, efficient current injection, and enhanced light scattering resulting from the low contact resistivity, low lateral current resistance, and additional textured surface, respectively. Furthermore, LBSD did not degrade the electrical properties of the TFLEDs owing to low reverse leakage currents. The results indicate that our approach could potentially enable high-efficiency and high-power capabilities for optoelectronic devices.

Keywords:

laser; Si doping; GaN; thin film; LEDs

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700