Revealing Nanostructures through Plasmon Polarimetry
详细信息    查看全文
文摘
Polarized optical dark-field spectroscopy is shown to be a versatile noninvasive probe of plasmonic structures that trap light to the nanoscale. Clear spectral polarization splittings are found to be directly related to the asymmetric morphology of nanocavities formed between faceted gold nanoparticles and an underlying gold substrate. Both experiment and simulation show the influence of geometry on the coupled system, with spectral shifts Δλ = 3 nm from single atoms. Analytical models allow us to identify the split resonances as transverse cavity modes, tightly confined to the nanogap. The direct correlation of resonance splitting with atomistic morphology allows mapping of subnanometre structures, which is crucial for progress in extreme nano-optics involving chemistry, nanophotonics, and quantum devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700