Carrier Dynamics in Si Nanowires Fabricated by Metal-Assisted Chemical Etching
详细信息    查看全文
文摘
Silicon nanowire arrays fabricated by metal-assisted wet chemical etching have emerged as a promising architecture for solar energy harvesting applications. Here we investigate the dynamics and transport properties of photoexcited carriers in nanowires derived from an intrinsic silicon wafer using the terahertz (THz) time-domain spectroscopy. Both the dynamics and the pump fluence dependence of the photoinduced complex conductivity spectra up to several THz were measured. The photoinduced conductivity spectra follow a Lorentz dependence, arising from surface plasmon resonances in nanowires. The carrier lifetime was observed to approach 0.7 ns, which is limited primarily by surface trapping. The intrinsic carrier mobility was found to be 1000 cm2/(V路s). Compared to other silicon nanostructures, these relative high values observed for both the carrier lifetime and mobility are the consequences of high crystallinity and surface quality of the nanowires fabricated by the metal-assisted wet chemical etching method.

Keywords:

silicon nanowire; terahertz time-domain spectroscopy; surface band bending

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700