Small Molecule-Initiated Light-Activated Semiconducting Polymer Dots: An Integrated Nanoplatform for Targeted Photodynamic Therapy and Imaging of Cancer Cells
详细信息    查看全文
文摘
Photodynamic therapy (PDT) is a noninvasive and light-activated method for cancer treatment. Two of the vital parameters that govern the efficiency of PDT are the light irradiation to the photosensitizer and visual detection of the selective accumulation of the photosensitizer in malignant cells. Herein, we prepared an integrated nanoplatform for targeted PDT and imaging of cancer cells using folic acid and horseradish peroxidase (HRP)-bifunctionalized semiconducting polymer dots (FH-Pdots). In the FH-Pdots, meta-tetra(hydroxyphenyl)-chlorin (m-THPC) was used as photosensitizer to produce cytotoxic reactive oxygen species (ROS); fluorescent semiconducting polymer poly[2-methoxy-5-((2-ethylhexyl)oxy)-p-phenylenevinylene] was used as light antenna and hydrophobic matrix for incorporating m-THPC, and amphiphilic Janus dendrimer was used as a surface functionalization agent to conjugate HRP and aminated folic acid onto the surface of FH-Pdots. Results indicated that the doped m-THPC can be simultaneously excited by the on-site luminol鈥揌2O2鈥揌RP chemiluminescence system through two paths. One is directly through chemiluminescence resonance energy transfer (CRET), and the other is through CRET and subsequent fluorescence resonance energy transfer. In vitro PDT and specificity studies of FH-Pdots using a standard transcriptional and translational assay against MCF-7 breast cancer cells, C6 glioma cells, and NIH 3T3 fibroblast cells demonstrated that cell viability decreased with increasing concentration of FH-Pdots. At the same concentration of FH-Pdots, the decrease in cell viability was positively relevant with increasing folate receptor expression. Results from in vitro fluorescence imaging exhibited that more FH-Pdots were internalized by cancerous MCF-7 and C6 cells than by noncancerous NIH 3T3 cells. All the results demonstrate that the designed semiconducting FH-Pdots can be used as an integrated nanoplatform for targeted PDT and on-site imaging of cancer cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700