Facile Fabrication of Polyolefin/Carbon Nanotube Composites via in Situ Friedel鈥揅rafts Polyalkylation: Structure and Properties
详细信息    查看全文
文摘
Despite major advances in addressing the dispersion of carbon nanotubes (CNTs) in polymers and their interfacial interactions, exploring a facile approach for massively creating them is still fascinating. We interestingly find that the CNT dispersion is considerably improved in polypropylene (PP), and 19.1 wt % of PP chains were in situ chemically grafted onto CNT surfaces only using a trace of AlCl3 via a one-step melt-blending. Compared with the PP/CNT composite, adding 0.2 wt % of AlCl3 enables an increase in tensile strength and Young鈥檚 modulus of 30% and 25%, respectively. Moreover, the elongation at break is almost maintained, while adding CNTs alone causes significant decreases. Additionally, 0.2 wt % AlCl3 makes the thermal degradation temperature further improved. These remarkable improvements in properties are mainly attributed to better dispersion of CNTs and enhanced interfacial compatibility. This work opens up an innovative approach for scalable preparation of polyolefin/CNT composites applying to industrial production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700