Infrared Spectra of the 1-Pyridinium (C5H5NH+) Cation and Pyridinyl (C5H5NH and 4-C5H6N) Radicals Isolated in Solid para
详细信息    查看全文
  • 作者:Barbara Golec ; Prasanta Das ; Mohammed Bahou ; Yuan-Pern Lee
  • 刊名:Journal of Physical Chemistry A
  • 出版年:2013
  • 出版时间:December 19, 2013
  • 年:2013
  • 卷:117
  • 期:50
  • 页码:13680-13690
  • 全文大小:621K
  • 年卷期:v.117,no.50(December 19, 2013)
  • ISSN:1520-5215
文摘
Protonated pyridine and its neutral counterparts (C5H6N) are important intermediates in organic and biological reactions and in the atmosphere. We have recorded the IR absorption spectra of the 1-pyridinium (C5H5NH+) cation, 1-pyridinyl (C5H5NH), and 4-pyridinyl (4-C5H6N) produced on electron bombardment during matrix deposition of a mixture of pyridine (C5H5N) and p-H2 at 3.2 K; all spectra were previously unreported. The IR features of C5H5NH+ diminished in intensity after the matrix was maintained in darkness for 15 h, whereas those of C5H5NH and 4-C5H6N radicals increased. Irradiation of this matrix with light at 365 nm diminished lines of C5H5NH+ and C5H5NH but enhanced lines of 4-C5H6N slightly, whereas irradiation at 405 nm diminished lines of 4-C5H6N significantly. Observed wavenumbers and relative intensities of these species agree satisfactorily with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3LYP/6-31++G(d,p) method. Assignments of C5H5NH and 4-C5H6N radicals were further supported by the observation of similar spectra when a Cl2/C5H5N/p-H2 matrix was irradiated first at 365 nm and then with IR light to generate H atoms to induce the H + C5H5N reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700