Controllable Modification of the Electronic Structure of Carbon-Supported Core鈥揝hell Cu@Pd Catalysts for Formic Acid Oxidation
详细信息    查看全文
文摘
This study analyzes the synthesis of carbon-supported core鈥搒hell structured Cu@Pd catalysts (Cu@Pd/C) through a galvanic replacement reaction to be utilized in the electrocatalytic oxidation of formic acid. The strategy used in this study explores the relationship among lattice strain, electronic structure, and catalytic performance. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the inclusion of Cu in the nanocatalyst increases lattice strain and results in a downshift of the d-band of palladium. Electrochemical tests show that Cu@Pd/C catalysts exhibit weaker adsorption strength for CO with increased Cu content, which can be attributed to the downshift of the electronic d-band. For the synthesized materials, the Cu@Pd/C catalyst with a Cu:Pd atomic ratio of 27:73 is found to have the highest activity for formic acid oxidation. A peaklike plot between activity and atomic composition is acquired and reveals the relationship among lattice strain, electronic structure, and catalytic performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700