On the Hofmeister Effect: Fluctuations at the Protein鈥揥ater Interface and the Surface Tension
详细信息    查看全文
文摘
We performed molecular dynamics simulations on the tryptophane-cage miniprotein using a nonpolarizable force field, in order to model the effect of concentrated water solutions of neutral salts on protein conformation, which is a manifestation of Hofmeister effects. From the equilibrium values and the fluctuations of the solvent accessible surface area of the miniprotein, the salt-induced changes of the mean value of protein鈥搘ater interfacial tension were determined. At 300 K, the chaotropic ClO4鈥?/sup> and NO3鈥?/sup> decreased the interfacial tension according to their position in the Hofmeister series (by approximately 5 and 2.7 mN/m, respectively), while the kosmotropic F鈥?/sup> increased it (by 1 mN/m). These values were compared to those obtained from the Gibbs equation using the excess surface adsorption calculated from the probability distribution of the water molecules and ions around the miniprotein, and the two sets were found to be very close to each other. Our results present a direct evidence for the central role of interfacial tension and fluctuations at the protein鈥搘ater interface in Hofmeister phenomena, and provide a computational method for the determination of the protein鈥搘ater interfacial tension, establishing a link between the phenomenological and microscopic description of protein鈥搘ater interfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700