Kinetic study of thermal polymerization reactions between diazide and different diynes
详细信息    查看全文
  • 作者:Rongpeng Liu 刘荣鹏 ; Liqiang Wan 万里强
  • 关键词:1 ; 3 ; dipolar cycloaddition ; dipropargyl bisphenol A ; 1 ; 3 ; diethylnylbenzene ; kinetic study ; apparent activation energy
  • 刊名:Journal of Wuhan University of Technology--Materials Science Edition
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:31
  • 期:1
  • 页码:157-163
  • 全文大小:1,346 KB
  • 参考文献:[1]Michael A. Uber Die Einwirkung Von Diazobenzolimid Auf Acetylendicarbon Sauremethylester[J]. J. Prake. Chem., 1893, 48: 94–95CrossRef
    [2]Benson F R, Savel W L. The Chemistry of the Vicinal Triazoles[J]. Chem. Rev., 1950, 46(1): 1–68CrossRef
    [3]L’abbe G. Decomposition and Addition Reactions of Organic Azides[J]. Chem. Rev., 1969, 69(3): 345–363CrossRef
    [4]Huisgen R. 1,3-Dipolar Cycloadditions Past and Future[J]. Angew. Chem. Int. Ed., 1963, 2(11): 633–645CrossRef
    [5]Johson K E, Lovinger J A, Parker C O. 1,3-Dipolar Cycloaddition Polymerization of 4-azido-1-butyne[J]. J. Polym. Sci. Part B: Polym. Lett., 1966, 4: 977–979CrossRef
    [6]Baldwin M G, Johson K E, Lovinger J A. 1,3-Dipolar Cycloaddition Polymerization of Compounds Containing both Azido and Acetylenegroups[J]. J. Polym. Sci. Part B: Polym. Lett., 1967, 5: 803–805CrossRef
    [7]Rostovtsev V V, Green L G, Fokin V V, et al. A Stepwise Huisgen Cycloaddition Process: Copper(?)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes[J]. Angew. Chem. Int. Ed., 2001, 40(11): 2 004–2 021CrossRef
    [8]Himo F, Lovell T, Hilgraf R. Copper (I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates[J]. J. Am. Chem. Soc., 2005, 127(1): 210–216CrossRef
    [9]Binder W H, Sachsenhofer R. “Click” Chemistry in Polymer and Material Science: An Update[J]. Macromol. Rapid Commun., 2008, 29(12-13): 952–981CrossRef
    [10]Iha R K, Wooley K L, Nyström A M, et al. Applications of Orthogonal “Click” Chemistries in the Synthesis of Functional Soft Materials[J]. Chem. Rev., 2009, 109(11): 5 620–5 686CrossRef
    [11]Meldal M, Tornøe C W. Cu-Catalyzed Azide-Alkyne Cycloaddition[J]. Chem. Rev., 2008, 108(8): 2 952–3 015CrossRef
    [12]Carlmark A, Hawker C, Hult A, et al. New Methodologies in the Construction of Dendritic Materials[J]. Chem. Soc. Rev., 2009(38): 352–362
    [13]Droumaguet B L, Velonia K. Click Chemistry: A Powerful Tool to Create Polymer-Based Macromolecular Chimeras[J]. Macromol. Rapid Commun., 2008, 29(12-13): 1 073–1 089CrossRef
    [14]Lutz J F. 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science[J]. Angew. Chem. Int. Ed., 2007, 46(7): 1 018–1 025CrossRef
    [15]Schunack M, Gragert M, Döhler D, et al. Low-Temperature Cu (I)-Catalyzed “Click” Reactions for Self-Healing Polymers[J]. Macromol. Chem. Phys., 2012, 213(2): 205–214CrossRef
    [16]Hu Y H, Luo Y H, Wan L Q, et al. 1,3-Dipolar Cycloaddition Polymerization of Bispropargyl Ether of Bisphenol A with 4,4’-biphenyl Dibenzyl Azide and their Thermal Analyses[J]. Acta. Polym. Sin., 2005, 1(4): 560–565
    [17]Luo Y H, Hu Y H, Wan L Q, et al. Cure Kinetics Study of the Polymerization of N, N, N’, N’-tetrapropargyl-p, p’-diamino Diphenyl Methane[J]. Chem. J. Chinese U., 2006, 27: 170–173
    [18]Xue L, Wan L Q, Hu Y H, et al. Thermal Stability of a Novel Polytriazole Resin[J]. Thermochim. Acta., 2006, 448(2): 147–153CrossRef
    [19]Tian J J, Wan L Q, Huang J Z, et al. Synthesis and Characterization of a Novel Polytriazole Resin with Low-Temperature Curing Character[J]. Polym. Adv. Technol., 2007, 18(7): 556–561CrossRef
    [20]Wan L Q, Luo Y H, Xue L, et al. Preparation and Properties of a Novel Polytriazole Resin[J]. J. Appl. Polym. Sci., 2007, 104(2): 1 038–1 042CrossRef
    [21]E Y P, Wan L Q, Zhou X A, et al. Synthesis and Properties of Novel Polytriazoleimides derived from 1,2,3-triazole-containing Diamine and Aromatic Dianhydrides[J]. Polym. Adv. Technol., 2012, 23(7): 1 092–1 100CrossRef
    [22]E Y P, Wan L Q, Huang F R, et al. New Polytriazoleimides with High Thermal and Chemical Stabilities[J]. B. Kor. Chem. Soc., 2012, 33(7): 2 193–2 199CrossRef
    [23]Li Y J, Wan L Q, Zhou H, et al. A Novel Polytriazole-Based Organogel formed by the Effects of Copper Ions[J]. Polym. Chem., 2013, 4: 3 444–3 447CrossRef
    [24]Kissinger H E. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957, 29: 1 702–1 709CrossRef
    [25]Friedman H L. Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic[J]. J. Polym. Sci., Part C: Polym. Lett., 1964, 6: 183–195CrossRef
  • 作者单位:Rongpeng Liu 刘荣鹏 (1)
    Liqiang Wan 万里强 (1)
    Farong Huang (1)
    Lei Du (1)

    1. Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Chinese Library of Science
  • 出版者:Wuhan University, co-published with Springer
  • ISSN:1993-0437
文摘
The reaction kinetics between diazide(4,4’-biphenyl dibenzyl azide) and different diynes (dipropargyl bisphenol A and 1,3-diethynylbenzene) were studied by means of differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (1H-NMR). DSC was adopted to analyze the reactions under bulk polymerization condition, while 1H-NMR for solution reaction polymerization was conducted. The apparent activation energies (E α) calculated by Kissinger’s method were 77.96, 81.24 kJ/mol, which were confirmed by Friedman’s method, and 65.45, 69.36 kJ/mol by 1H-NMR for dispropargyl bisphenol A/4,4’-biphenyl dibenzyl azide and 1,3-diethynylbenzene/4,4’-biphenyl dibenzyl azide, respectively. The polymerizations between the diazide and diynes were first-order reactions based on calculation from both DSC and 1H-NMR. The results showed that the reaction between dipropargyl bisphenol A and 4,4’-biphenyl dibenzyl azide was easier than that between 1,3-diethynylbenzene and 4,4’-biphenyl dibenzyl azide, verifying that the reactivity of aliphatic alkyne was higher than that of aromatic alkyne. Key words 1,3-dipolar cycloaddition dipropargyl bisphenol A 1,3-diethylnylbenzene kinetic study apparent activation energy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700