A label-free colorimetric assay for detection of c-Myc mRNA based on peptide nucleic acid and silver nanoparticles
详细信息    查看全文
  • 作者:Xia Li ; Juan Song ; Bao-Li Chen ; Bing Wang ; Rui Li ; Hui-Min Jiang…
  • 关键词:Colorimetric ; c ; Myc mRNA ; Peptide nucleic acid ; Silver nanoparticles ; 肽核酸
  • 比色法 c ; Myc mRNA ; 纳米
  • 刊名:Chinese Science Bulletin
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:61
  • 期:4
  • 页码:276-281
  • 全文大小:911 KB
  • 参考文献:1.Huang RC, Chiu WJ, Li YJ et al (2014) Detection of microRNA in tumor cells using exonuclease III and graphene oxide regulated signal amplification. ACS Appl Mater Interfaces 6:21780–21787CrossRef
    2.Kauraniemi P, Bärlund M, Monni O et al (2001) New amplified and highly expressed genes discovered in the ERBB2 applicant in breast cancer by cDNA microarrays. Cancer Res 61:8235–8240
    3.Stephen SW, Yeung TM, Hsing IM (2008) Electrochemistry based real-time PCR on a microchip. Anal Chem 80:363–368CrossRef
    4.Wu MS, Qian GS, Xu JJ et al (2012) Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode. Anal Chem 84:5407–5414CrossRef
    5.Wu Y, Kwak KJ, Agarwal K et al (2013) Detection of extracellular RNAs in cancer and viral infection via tethered cationic lipoplex nanoparticles containing molecular beacons. Anal Chem 85:11265–11274CrossRef
    6.Cao YW, Jin RC, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962CrossRef
    7.Valentini P, Pompa PP (2013) Gold nanoparticles for naked-eye DNA detection: smart designs for sensitive assays. RSC Adv 3:19181–19190CrossRef
    8.Cao W, Wang XW, Fan HH et al (2015) Fabrication of superstable gold nanorod–carbon nanocapsule as a molecule loading material. Sci Bull 60:1101–1107CrossRef
    9.Zhao F, Hu B (2015) Cancer therapy may get a boost from gold nanorods. Sci Bull 60:279–280CrossRef
    10.Zhang X, Mark RS, Liu JW (2012) Fast pH-assisted functionalization of silver nanoparticles with monothiolated DNA. Chem Commun 48:10114–10116CrossRef
    11.Li H, Zhu Y, Dong SY et al (2014) Fast functionalization of silver decahedral nanoparticles with aptamers for colorimetric detection of human platelet-derived growth factor-BB. Anal Chim Acta 829:48–53CrossRef
    12.Li H, Sun Z, Zhong W et al (2010) Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates. Anal Chem 82:5477–5483CrossRef
    13.Li H, Chen CY, Wei W et al (2012) Highly sensitive detection of proteins based on metal-enhanced fluorescence with novel silver nanostructures. Anal Chem 84:8656–8662CrossRef
    14.Lee JS, Lytton-Jean AK, Hurst SJ et al (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115CrossRef
    15.Su XD, Kanjanawarut R (2009) Control of metal nanoparticles aggregation and dispersion by PNA and PNA-DNA complexes, and its application for colorimetric DNA detection. ACS Nano 3:2751–2759CrossRef
    16.Nielsen PE (1998) Structural and biological properties of peptide nucleic acid (PNA). Pure Appl Chem 70:105–110CrossRef
    17.Nielsen PE, Haaima G (1997) Peptide nucleic acid (PNA), A DNA mimic with a pseudopeptide backbone. Chem Soc Rev 26:73–78CrossRef
    18.Joshi VG, Chindera K, Singh AK et al (2013) Rapid label-free visual assay for the detection and quantification of viral RNA using peptide nucleic acid and gold nanoparticles. Anal Chim Acta 795:1–7CrossRef
    19.Komiyama M, Ye S, Liang XG et al (2003) PNA for one-base differentiating protection of DNA from nuclease and its use for SNPs detection. J Am Chem Soc 125:3758–3762CrossRef
    20.Duy J, Smith RL, Collins S et al (2014) A field deployable colorimetric bioassay for the rapid and specific detection of ribosomal RNA. Biosens Bioelectron 52:433–437CrossRef
    21.Pocsfalvi G, Votta G, Vincenzo AD et al (2011) Analysis of secretome changes uncovers an autocrine/paracrine component in the modulation of cell proliferation and motility by c-Myc. J Proteome Res 10:5326–5337CrossRef
    22.Mehndiratta M, Palanichamy JK, Bhagat M et al (2011) CpG hypermethylation of the c-Myc promoter by dsRNA results in growth suppression. Mol Pharm 8:2302–2309CrossRef
  • 作者单位:Xia Li (1)
    Juan Song (1)
    Bao-Li Chen (1)
    Bing Wang (1)
    Rui Li (1)
    Hui-Min Jiang (1)
    Ji-Feng Liu (2)
    Chen-Zhong Li (1) (3)

    1. Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
    2. Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
    3. Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
A label-free colorimetric protocol based on peptide nucleic acid/silver nanoparticles (PNA/AgNPs) has been initially proposed for specific recognition of mRNA. Making use of the controlled silver nanoparticles aggregation/dispersion by PNA/PNA–RNA complex, proto-oncogene c-Myc mRNA detection can be achieved. Moreover, the PNA/AgNPs platform can undergo color change in response to target c-Myc mRNA with single-base-mismatch sensitivity, which could further help in visually identify single nucleotide differences in target genes. Keywords Colorimetric c-Myc mRNA Peptide nucleic acid Silver nanoparticles

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700