Reconstruction of bipartite states via unambiguous state discrimination and mutually unbiased measurement
详细信息    查看全文
  • 作者:Lian-Fang Han (1) (2)
    Ming Yang (1)
    Shu-Dong Fang (3)
    Zhuo-Liang Cao (1) (4)

    1. School of Physics and Material Science
    ; Anhui University ; Hefei ; 230601 ; China
    2. Department of Applied Physics
    ; School of Life Science ; Anhui Medical University ; Hefei ; 230032 ; China
    3. Department of Mechanical and Electronic Engineering
    ; Chizhou University ; Chizhou ; 247000 ; China
    4. School of Electronic and Information Engineering
    ; Hefei Normal University ; Hefei ; 230061 ; China
  • 关键词:Quantum state tomography ; Unambiguous state discrimination ; Mutually unbiased measurement ; Von Neumann measurement
  • 刊名:Quantum Information Processing
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:14
  • 期:1
  • 页码:381-391
  • 全文大小:155 KB
  • 参考文献:1. Stokes, G.C.: On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Philos. Soc. 9, 399鈥?16 (1852)
    2. Fano, U.: Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29, 74鈥?3 (1957) CrossRef
    3. Cahill, K.E., Glauber, R.J.: Density operators and quasiprobability distributions. Phys. Rev. 177, 1882鈥?902 (1969) CrossRef
    4. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244鈥?247 (1993) CrossRef
    5. Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847鈥?849 (1989) CrossRef
    6. Beck, M.: Quantum state tomography with array detectors. Phys. Rev. Lett. 84, 5748鈥?751 (2000) CrossRef
    7. James, D.F.V., et al.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001) CrossRef
    8. Thew, R.T., Nemoto, K., White, A.G., Munro, W.J.: Qudit quantum-state tomography. Phys. Rev. A 66, 012303 (2002) CrossRef
    9. Steffen, M., et al.: State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006) CrossRef
    10. Klimov, A.B., Mu帽oz, C., Fern谩ndez, A., Saavedra, C.: Optimal quantum-state reconstruction for cold trapped ions. Phys. Rev. A 77, 060303(R) (2008) 060303" target="_blank" title="It opens in new window">CrossRef
    11. Husz谩r, F., Houlsby, N.M.T.: Adaptive Bayesian quantum tomography. Phys. Rev. A 85, 052120 (2012) CrossRef
    12. Yan, F., Yang, M., Cao, Z.L.: Optimal reconstruction of the states in qutrit systems. Phys. Rev. A 82, 044102 (2010) CrossRef
    13. Klimov, A.B., Bj枚rk, G., S谩nchez-Soto, L.L.: Optimal quantum tomography of permutationally invariant qubits. Phys. Rev. A 87, 012109 (2013) CrossRef
    14. Adamson, R.B.A., et al.: Improving quantum state estimation with mutually unbiased bases. Phys. Rev. Lett. 105, 030406 (2010) CrossRef
    15. Lima, G., et al.: Experimental quantum tomography of photonic qudits via mutually unbiased basis. Opt. Express 19, 3542鈥?552 (2011) CrossRef
    16. Giovannini, D., et al.: Characterization of high-dimensional entangled systems via mutually unbiased measurements. Phys. Rev. Lett. 110, 143601 (2013) CrossRef
    17. Gross, D., et al.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010) CrossRef
    18. Kalev, A., Shang, J.W., Englert, B.G.: Symmetric minimal quantum tomography by successive measurements. Phys. Rev. A 85, 052115 (2012) CrossRef
    19. Langford, N.K.: Errors in quantum tomography: diagnosing systematic versus statistical errors. New J. Phys. 15, 035003 (2013) CrossRef
    20. Resch, K.J., Walther, P., Zeilinger, A.: Full characterization of a three-photon Greenberger鈥揌orne鈥揨eilinger state using quantum state tomography. Phys. Rev. Lett. 94, 070402 (2005) CrossRef
    21. Liu, W.T., et al.: Experimental quantum state tomography via compressed sampling. Phys. Rev. Lett. 108, 170403 (2012) CrossRef
    22. Rosset, D., et al.: Imperfect measurement settings: implications for quantum state tomography and entanglement witnesses. Phys. Rev. A 86, 062325 (2012) CrossRef
    23. Agnew, M., et al.: Tomography of the quantum state of photons entangled in high dimensions. Phys. Rev. A 84, 062101 (2011) CrossRef
    24. Wang, S.X., et al.: High-speed tomography of time-bin-entangled photons using a single-measurement setting. Phys. Rev. A 86, 042122 (2012) CrossRef
    25. Eichler, C., et al.: Experimental state tomography of itinerant single microwave photons. Phys. Rev. Lett. 106, 220503 (2011) CrossRef
    26. Renema, J.J., et al.: Tomography and state reconstruction with superconducting single-photon detectors. Phys. Rev. A 86, 062113 (2012) CrossRef
    27. Salazar, R., Delgado, A.: Quantum tomography via unambiguous state discrimination. Phys. Rev. A 86, 012118 (2012) CrossRef
    28. Longdell, J.J., Sellars, M.J.: Phase conjugation of continuous quantum variables. Phys. Rev. A 69, 032307 (2004) CrossRef
    29. Wu, L.A., Byrd, M.S.: Self-protected quantum algorithms based on quantum state tomography. Quantum Inf. Process. 8, 1鈥?2 (2009) CrossRef
    30. Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339鈥?47 (1998) CrossRef
    31. Zhou, T.: Unambiguous discrimination between two unknown qudit states. Quantum Inf. Process. 11, 1669鈥?684 (2013) CrossRef
    32. Zhang, W.H., et al.: Optimal unambiguous discrimination of pure qudits. Quantum Inf. Process. 13, 503鈥?11 (2014) CrossRef
    33. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363鈥?81 (1989) CrossRef
    34. Sugimoto, H., Hashimoto, T., Horibe, M., Hayashi, A.: Complete solution for unambiguous discrimination of three pure states with real inner products. Phys. Rev. A 82, 032338 (2010) CrossRef
    35. Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012) CrossRef
    36. Zhang, F.L., Chen, J.L., Kwek, L.C., Vedral, V.: Requirement of dissonance in assisted optimal state discrimination. Sci. Rep. 3, 2134 (2013)
    37. Xu, L.F., Zhang, F.L., Liang, M.L., Chen, J.L.: Assisted optimal state discrimination without entanglement. Europhys. Lett. 106, 50004 (2014) CrossRef
    38. Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512鈥?28 (2002) CrossRef
    39. Huttner, B., et al.: Unambiguous quantum measurement of nonorthogonal states. Phys. Rev. A 54, 3783鈥?789 (1996) CrossRef
    40. Clarke, R.B.M., et al.: Experimental demonstration of optimal unambiguous state discrimination. Phys. Rev. A 63, 040305 (2001) CrossRef
    41. Mohseni, M., et al.: Optical realization of optimal unambiguous discrimination for pure and mixed quantum states. Phys. Rev. Lett. 93, 200403 (2004) CrossRef
    42. Jim茅nez, O., et al.: Experimental scheme for unambiguous discrimination of linearly independent symmetric states. Phys. Rev. A 76, 062107 (2007) CrossRef
    43. Torres-Ruiz, F.A., et al.: Unambiguous modification of nonorthogonal single- and two-photon polarization states. Phys. Rev. A 79, 052113 (2009) CrossRef
    44. Andersson, E.: Optimal minimum-cost quantum measurements for imperfect detection. Phys. Rev. A 86, 012120 (2012) CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
We propose a scheme for reconstructing an unknown two-particle mixed state by means of unambiguous state discrimination. In this protocol, an ancillary particle is introduced for distinguishing four nonorthogonal states. The discrimination process is performed by a bipartite unitary operation on the two-particle system and the ancilla followed by a von Neumann measurement on the ancilla. Then the original two-particle system is measured in mutually unbiased bases. Consequently, the two-particle mixed state can be reconstructed. Furthermore, the total number of measurements in this protocol is less than that of the standard quantum tomography, thus the quantum resources is saved. Additionally, the nonorthogonal states discrimination and mutually unbiased measurement can be experimentally achieved, therefore our protocol may be realized with the current technology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700