Bestimmung thermischer Eigenschaften der Gesteine des Unteren und Mittleren Buntsandsteins
详细信息    查看全文
  • 作者:Claudia Franz ; Marcellus Schulze
  • 关键词:Thermal conductivity ; Thermal diffusivity ; Temperature correction methods ; Mesozoic sandstones
  • 刊名:Grundwasser
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:47-58
  • 全文大小:1,052 KB
  • 参考文献:Backhaus, E., Schwarz, S.: Ein Sammelprofil des Buntsandsteins und Zechsteins im mittleren Odenwald anhand von Bohrungen und Gamma-Logs. – Geol. Jb. Hessen, 130, 3 Abb., 2 Tab.; Wiesbaden (2003)
    Birch, F., Clark, H.: The thermal conductivity of rocks and its dependence upon temperature and composition. Am. J. Sci. 238, 529–558, 613–635 (1940)CrossRef
    BLM – Gesellschaft für Bohrlochmessungen mbH: Dokumentation – Bohrlochgeophysikalische Messungen – Forschungsbohrung Neuenbuch – Neuenbuch 1, Composite Plots. München (2014)
    Brigaud, F., Vasseur, G.: Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys. J. 98, 525–542 (1989)CrossRef
    Buntebarth, G.: Thermal properties of KTB-Oberpfalz VB core samples at elevated temperature and pressure. Sci. Drill. 2, 73–80 (1991)
    Campbell, G.S., Jungbauer, J.D. Jr., Bidlake, W.R., Hungerford, R.D.: Predicting the effect of temperature on soil thermal conductivity. Soil Sci. 158, 307–313 (1994)CrossRef
    Carslaw, H.S., Jaeger, J.C.: Cunduction and convection of heat in solids, 2. Aufl. Clarendon Press, Oxford (1959)
    Chapman, D.S., Keho, T.H., Bauer, M.S., Picard, M.D.: Heat flow in the Uinta Basin determined from bottom hole temperature (BHT) data. Geophysics. 49, 453–466 (1984)CrossRef
    Clauser, V.: Geothermal Energy. In: Landolt-Börnstein – Numerical Data and Functional Relationships. New Series, Bd. VIII, 115 S. Heidelberg-Berlin (2006)
    Clauser, C., Huenges, E.: Thermal conductivity of rocks and minerals. In: Rock Physics and Phase Relations: A Handbook of Physical Constants. AGU, Washington, D.C. (1995)
    De Marsily, G.: Quantitative Hydrogeology. Academic Press, San Diego (1986)
    De Vries, D.A.: Thermal properties of soils. Physics of Plant Environment, 210–235. North-Holland, Amsterdam (1963)
    DIN – Deutsches Institut für Normung: DIN EN 13755: Prüfverfahren für Naturstein – Bestimmung der Wasseraufnahme unter atmospärischen Druck (2008)
    E.ON – Energy Research Center: Erstellung statitisch abgesicherter thermischer und hydraulischer Gesteinseigenschaften für den flachen und tiefen Untergrund in Deutschland. Phase 2 – Westliches Nordrhein-Westfalen und bayerisches Molassebecken. RWTH Universität Aachen, 205 (2011)
    Herwig, H., Moschallski, A.: Wärmeübertragung – Physikalische Grundlagen – Illustrierende Beispiele – Übungsaufgaben mit Musterlösungen, S. 270. Springer-Verlag, Berlin (2009)
    Johansen, O.: Thermal conductivity of soils. Ph.D. diss. Norwegian Univ. of Science and Technology, Trondheim (CRREL draft transl. 637, 1977) (1975)
    Lee, Y., Deming, D.: Evaluation of thermal conductivity temperature correction applied in terrestrial heat flow studies. J. Geophys. Res. 103, 2447–2454 (1998)CrossRef
    LfU Bayern – Bayerisches Landesamt für Umwelt: Geologische Karte 1:500.000. München (1996)
    Lippmann E., Rauen, A.: TCS – Manual – Thermal Conductivity and Thermal Diffusivity Scanner. Lippmann & Rauen, Germany, Schauflingen, 51 (2014)
    Markle, J.M., Schincariol, R.A., Sass, J.H., Molson, J.W.: Characterizing the two dimensional thermal conductivity distribution I a sand and gravel aquifer. Soil Sci. Soc. Am. J. 70, 1281–1294 (2006)CrossRef
    Matthess, G.: Beziehung zwischen Bau und Grundwasserbewegung in Festgesteinen.- 105 S., Abh. Hess. L.-Amt f. Bodenforsch. 58 (1970)
    Meisl, S.: Zur Petrographie der Buntsandsteinsedimente. Erl. Geol. Kte. Hessen 1:25.000, Bl. 5124 Bad Hersfeld. 2 Abb., 4 Tab., 4 Diagr., Wiesbaden (1965)
    Molina-Giraldo, N., Bayer, P., Blum, P.: Evaluating the influence of mechanical thermal dispersion on temperature plumes from geothermal systems using analytical solutions. Int. J. Therm. Sci. 50 (7), 1223–1231 (2011)CrossRef
    Popov, Y.: Theoretical models of the method of determination of the thermal properties of rocks on the basis of moveable sources. Geol. Prospect. p(I), 97–103 (1983)
    Popov, Y.A.: Optical scanning technology for nondestructive contactless measurements of thermal conductivity and diffusivity of solid matters. In: Experimental Heat Transfer, Fluid Mechanics and Thermodynamics. Proceedings of the 4-th World Conference. Brussels, Belgium, 1, 109–117 (1997)
    Popov, Y.A., Semionov, V.G., Korosteliov, V.M., Berezin, V.V.: Non-contact evaluation of thermal conductivity of rocks with the aid of a mobile heat source. Izv. Phys. Solid. Earth. 19, 563–567 (1983)
    Popov, Y.A., Berezin, V.V., Semionov, V.G., Korosteliov, V.M.: Complex detailed investigations of the thermal properties of rocks on the basis of a moving point source. Izv. Phys. Solid. Earth. 1, 64–70 (1985)
    Popov, Y.A., Pribnow, D.F.C., Sass, J.H., Williams, C.F., Burkhardt, H.: Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28, 253–276 (1999)CrossRef
    Sass, J.H., Stone, C., Munroe, R.J.: Thermal conductivity determination on solid rock – a comparison between a steady-state divided-bar apparatus and a commercial transient line-source device. J. Volc. Geotherm. Res. 20, 145–153 (1984)CrossRef
    Sass, J.H., Lachenbruch, T.H., Moses, Jr., Morgan, P.: Heat flow from a scientific research well at Cajon Pass, California. J. Geophys. Res. 97, 5017–5030 (1992)CrossRef
    Schwarzmeier, J.: Geologische Karte von Bayern 1:25.000, Erläuterungen zum Blatt 6123 Marktheidenfeld. 31 Abb., 9 Tab., 6 beil., 1 Kte. (1979)
    Schwarzmeier, J.: Geologische Karte von Bayern 1:25.000, Erläuterungen zum Blatt 6023 Lohr a. Main. 23 Abb., 5 Tab., 6 beil., 1 Kte. (1980)
    Schwarzmeier, J.: Geologische Karte von Bayern 1:25.000, Erläuterungen zum Blatt 6122 Bischbrunn (1984)
    SKPT – Subkommission Perm-Trias.:  Recommendation of the German Stratigraphic Commission 1991-2010 on the Permian and Triassic of Central Europe. Z. dt. Ges. Geowiss. 162: 1–18, Stuttgart (2011)
    Somerton, W.H.: Thermal properties on temperature-related behavior of rock/fluid systems, S 257. Elsevier, New York (1992)
    STD – Stratigraphische Tabelle von Deutschland. 2002. Deutsche Stratigraphische Kommission. Menning, M.& Hendrich, A. (eds.), Frankfurt a. M., Germany , 2002.
    Tikhomirov, A.: Conductivity of rocks and their relationship with density, saturation and temperature. Neft. Khoz. 46, 36 (1968)
    Toussaint, R.: Numerisch simulierter Transport von sprengstofftypischen Schadstoffen in einem Buntsandstein-Aquifer, S. 193. Universität Karlsruhe, Dissertation (2006)
    Troschke, B., Burkhardt, H.: Thermal conductivity models for two-phase systems. Phys. Chem. Earth 23, 351–355 (1998)CrossRef
    Udluft, P.: Hydrogeologie des Oberen Sinntales. Geol. Bavaria 64, 365logi (1971)
    Verein Deutscher Ingenieure: VDI 4640 – Thermische Nutzung des Untergrundes (2010)
    Wittmann, O.: Geologische Karte von Bayern 1:25.000, Blatt 6022 Rothenbuch – 4 Abb., 3 Tab., 4 Taf. (1972)
    Woodside, W., Messmer, J.H.: Thermal Conductivity of Porous Media I: Unconsolidated Sands. J. Appl. Phys. 32, 1688–1699 (1961)CrossRef
  • 作者单位:Claudia Franz (1)
    Marcellus Schulze (1)

    1. Bayerisches Landesamt für Umwelt, Hans-Högn-Straße 12, 95030, Hof, Deutschland
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Applied Geosciences
    Soil Science and Conservation
    Geoecology and Natural Processes
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1165
文摘
For accurate planning of vertical borehole heat exchanger systems, knowledge of thermo-physical ground parameters is critical. This study reports laboratory-measured thermal conductivity and diffusivity values of Mesozoic sandstones (Lower and Middle Buntsandstein) from four wells. The measurements were made on drill core using an optical scanning method. The mean thermal conductivities of the sandstones range between 2.6 ± 0.3 W / (m · K) and 3.1 ± 0.4 W / (m · K) for dry conditions and between 3.6 ± 0.3 W / (m · K) and 4.1 ± 0.6 W / (m · K) after saturation with water. The mean thermal diffusivity values range between (1.6 ± 0.2) · 10− 6 m2 / s for dry and (2.0 ± 0.6) · 10− 6 m2 / s for water-saturated sandstones. Thermal properties are closely related to the petrography and lithostratigraphy of the sandstones. Additionally, three temperature correction methods were applied for the purpose of evaluating the comparative accuracy and the correction schemes with respect to local in-situ conditions. The results show that the temperature corrections proposed by Somerton (Thermal properties on temperature-related behavior of rock/fluid systems, Elsevier, New York, S 257, 1992) and Sass et al. (J Geophys Res, 97:5017–5030, 1992) are most suited for the respective sandstone data set.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700