Enhancement of buffer capability in slow light photonic crystal waveguides with extended lattice constants
详细信息    查看全文
  • 作者:Fulya Bagci (1)
    Baris Akaoglu (1)

    1. Department of Engineering Physics
    ; Faculty of Engineering ; Ankara University ; 06100 ; Besevler ; Ankara ; Turkey
  • 关键词:Slow light ; Photonic crystal ; Buffer capacity ; Dynamic modulation
  • 刊名:Optical and Quantum Electronics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:47
  • 期:3
  • 页码:791-806
  • 全文大小:1,956 KB
  • 参考文献:1. Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465鈥?73 (2008) CrossRef
    2. Bagci, F.: Influences of supercell termination and lateral row number on the determination of the slow light properties of photonic crystal waveguides. Optik-Int. J. Light Electron. Opt. 124, 4739鈥?743 (2013)
    3. Bagci, F., Akaoglu, B.: A systematic analysis of hole-size, hole-type and rows shifting on slow light characteristics of photonic crystal waveguides with ring-shaped holes. Optik-Int. J. Light Electron. Opt. 125, 2702鈥?707 (2014)
    4. Brosi, J.-M.: High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177鈥?191 (2008) CrossRef
    5. Carlsson, N.: Design, nano-fabrication and analysis of near-infrared 2D photonic crystal air-bridge structures. Opt. Quantum Electron. 34, 123鈥?31 (2002) CrossRef
    6. Chen, H.: Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss. Appl. Phys. Lett. 93, 043507-1鈥?43507-3 (2008)
    7. Frandsen, L.H.: Photonic crystal waveguides with semislow light and tailored dispersion properties. Opt. Express 14, 9444鈥?450 (2006) CrossRef
    8. Hamachi, Y.: Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide. Opt. Lett. 34, 1072鈥?074 (2009) CrossRef
    9. Hao, R.: Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Opt. Express 18, 16309鈥?6319 (2010a)
    10. Hao, R.: Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product. IEEE Photonics Technol. Lett. 22(11), 1041鈥?135 (2010b)
    11. Heijden, R.: InP-based two-dimensional photonic crystals filled with polymers. Appl. Phys. Lett. 88(16), 161112-1鈥?61112-3 (2006)
    12. Hou, J.: Flat band slow light in symmetric line defect photonic crystal waveguides. IEEE Photonics Technol. Lett. 21(20), 1571鈥?573 (2009) CrossRef
    13. Hughes, S.: Extrinsic optical scattering loss in photonic crystalwaveguides: role of fabrication disorder and photon group velocity. Phys. Rev. Lett. 94, 033903-1鈥?33903-4 (2005)
    14. Johnson, S.G.: Block-iterative frequency-domain methods for Maxwell鈥檚 equations in a planewave basis. Opt. Express 8, 173鈥?90 (2001) CrossRef
    15. Koos, C.: All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics 3, 216鈥?19 (2009) CrossRef
    16. Kubo, S.: Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Opt. Lett. 32, 2981鈥?983 (2007) CrossRef
    17. Kurt, H.: Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides. Opt. Express 18, 26965鈥?6977 (2010) CrossRef
    18. Leng, F.-C.: Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides. Opt. Express 18, 5707鈥?712 (2010) CrossRef
    19. Li, J.T.: Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 16, 6227鈥?232 (2008) CrossRef
    20. Liang, J.: Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide. J. Appl. Phys. 110, 063103-1鈥?63103-6 (2011)
    21. Lin, C.-Y.: Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Appl. Phys. Lett. 97, 093304-1鈥?93304-3 (2010)
    22. Long, F.: Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes. Appl. Opt. 49, 4808鈥?813 (2010a)
    23. Long, F.: A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides. J. Lightwave Technol. 28, 1139鈥?143 (2010b)
    24. Luo, J.D.: Facile synthesis of highly efficient phenyltetraene-based nonlinear optical chromophores for electrooptics. Org. Lett. 8, 1387鈥?390 (2006) CrossRef
    25. Ma, J.: Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides. IEEE Photonics Technol. Lett. 20(14), 1237鈥?239 (2008) CrossRef
    26. Moreolo, M.S.: Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides. J. Opt. A Pure Appl. Opt. 10, 064002-1鈥?64002-6 (2008)
    27. Natomi, N.: Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902-1鈥?53902-4 (2001)
    28. O鈥橣aolain, L.: Low-loss propagation in photonic crystal waveguides. Electron. Lett. 42(25), 1454鈥?455 (2006) CrossRef
    29. O鈥橣aolain, L.: Loss engineered slow light waveguides. Opt. Express 18(26), 27627鈥?7638 (2010) CrossRef
    30. Okawachi, Y.: All-optical slow-light on a photonic chip. Opt. Express 14, 2317鈥?322 (2006) CrossRef
    31. Petrov, A.Y.: Zero dispersion at small group velocities in photonic crystal waveguides. Appl. Phys. Lett. 85, 4866鈥?868 (2004) CrossRef
    32. Razzari, L.: Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals. Appl. Phys. Lett. 86, 231106-1鈥?31106-3 (2005)
    33. Settle, M.D.: Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Opt. Express 15, 219鈥?26 (2007) CrossRef
    34. Shen, H.J.: Dispersionless slow light by photonic crystal slab waveguide with innermost elliptical air holes. Optik-Int. J. Light Electron. Opt. 122, 1174鈥?178 (2011)
    35. Tian, H.: Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect. Opt. Commun. 285, 2760鈥?764 (2012) CrossRef
    36. Tucker, R.S.: Slow-light optical buffers: Capabilities and fundamental limitations. J. Lightwave Technol. 23, 4046鈥?066 (2005) CrossRef
    37. Wang, F.H.: Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides. J. Lightwave Technol. 26, 1381鈥?386 (2008) CrossRef
    38. Wu, J.: Wideband and low dispersion slow light in slotted photonic crystal waveguide. Opt. Commun. 283, 2815鈥?819 (2010) CrossRef
    39. Yang, D.: Electro-optic modulation property of slow light in coupled photonic crystal resonator arrays. Opt. Appl. XLI, 753鈥?63 (2011)
    40. Zhai, Y.: Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide. J. Lightwave Technol. 29, 3083鈥?090 (2011) CrossRef
  • 刊物主题:Optics, Optoelectronics, Plasmonics and Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks;
  • 出版者:Springer US
  • ISSN:1572-817X
文摘
Through shifting the rows adjacent to the line-defect along the waveguide direction, slow light photonic crystal slab waveguides with electro-optic polymer filled holes that show average group indices of 123 and 61.5 are obtained by three-dimensional plane-wave expansion method calculations. It is shown that the slow light properties and the buffering performance are enhanced by using an efficient method based on retreating the anti-crossing point with enlarging the lattice constant. This method has been shown to improve not only the bandwidth and flatten dispersion but also to reduce the variations in slow light properties that could occur due to fabrication inaccuracies. The performance of electro-optic modulation is drastically enhanced by exploiting local field enhancement induced by slow light effect. The buffering performance of the photonic crystal based buffer configurations are investigated and compared in terms of application needs. Since the modulation sensitivities of center wavelength and delay time change linearly with the applied voltage while remaining the buffer capacity and bit length almost constant, the investigated photonic crystal structures show promise for flexible and convenient buffering application in optical communication systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700