The effect of N-TiO2 on tomato, onion, and radish seed germination
详细信息    查看全文
  • 作者:Maryam Haghighi (1)
    Jaime A. Teixeira da Silva (2)

    1. Horticulture Department
    ; College of Agriculture ; Isfahan University of Technology ; Isfahan ; Iran
    2. P. O. Box 7
    ; Miki-cho post office Ikenobe 3011-2 ; Kagawa-ken ; 761-0799 ; Japan
  • 关键词:germination percentage (GP) ; mean germination time (MGT) ; nanotechnology ; scanning electron microscopy
  • 刊名:Journal of Crop Science and Biotechnology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:17
  • 期:4
  • 页码:221-227
  • 全文大小:569 KB
  • 参考文献:1. Alimohammadi M, Xu Y, Wang DY, Biris AS, Khodakovskaya MV. 2001. Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology 22: 295鈥?01
    2. Ca帽as JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Olszyk E. 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ. Chem. Toxicol. 27: 1922鈥?931 CrossRef
    3. Castiglione MR, Cremonini R. 2009. Nanoparticles and higher plants. Caryologia 62: 161鈥?65 CrossRef
    4. Castiglione MR, Giorgetti L, Geri C, Cremonini R. 2010. The effects of N-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis and Zea mays L. J. Nanoparticle Res. 13: 2443鈥?449 CrossRef
    5. Cl茅ment L, Hurel C, Marmier N. 2013. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants-effects of size and crystalline structure. Chemosphere 90: 1083鈥?090 CrossRef
    6. El-Temsah YS, Joner EJ. 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 27: 42鈥?9 CrossRef
    7. Fan RM, Huang YC, Grusak MA, Huang CP, Sherrier DJ. 2014. Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis. Sci. Total Env. 466鈥?67: 503鈥?12 CrossRef
    8. Feizi H, Amirmoradi S, Abdollahi F, Jahedi Pour S. 2013a. Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Ann. Rev. Res. Biol. 3: 814鈥?24
    9. Feizi H, Kamali M, Jafari L, Moghaddam PR. 2013b. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91: 506鈥?11 CrossRef
    10. Feizi H, Rezvani Moghaddam P, Shahtahmassebi N, Fotovat A. 2012. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol. Trace Elem. Res. 146: 101鈥?06 CrossRef
    11. Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma X-M, Berg RH, Geisler M. 2014. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nano materials 4: 301鈥?18
    12. Gimenez LJ, Mart铆nez-Sanchez F, Moreno A. 1990. Titanium in plant nutrition. III. Effect of Ti (IV) on yield of Capsicum anuum L. In: Proceedings of III National Symposium on Mineral Nutrition of Plants, SPIC-UIB, pp 123鈥?28
    13. Haghighi M, Heidarian S, Teixeira da Silva JA. 2012. The effect of titanium amendment in N-withholding nutrient solution on physiological and photosynthesis attributes and micro-nutrient uptake of tomato. Biol. Trace Elem. Res. 150: 381鈥?90 CrossRef
    14. Hartman HT, Kester D, Davies FT, Geneve RL. 2002. Plant Propagation: Principles and Practices. Pearson Education, 7th ed, 880 p
    15. Khot LR, Sankaran S, Mari Maja J, Ehsani R, Schuster EW. 2012. Applications of nano materials in agricultural production and crop protection: A review. Crop Prot. 35: 64鈥?0 CrossRef
    16. Kuzel S, Hruby M, Cigler P, Tlustos O, Van PN. 2003. Mechanism of physiological effects of titanium leaf sprays on plants growth on soil. Biol. Trace Elem. Res. 91: 1鈥?1 CrossRef
    17. Lee CW, Mahendra S, Zodrow K, Li D, Tsai Y, Braam J, Alvarez PJJ. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 29: 669鈥?/span> CrossRef
    18. Lin BS, Diao SQ, Li CH, Fang LJ, Qiao SC, Yu M. 2004. Effects of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. Forest. Res. 15: 138鈥?40 CrossRef
    19. Lin DH, Xing BS. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150: 243鈥?50 CrossRef
    20. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX. 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21: 168鈥?72
    21. Maleki N, Safavi A, Doroodmand MM. 2011. Fabrication of a room temperature hydrogen sensor based on thin film of single-walled carbon nanotubes doped with palladium nanoparticles. J. Exp. Nanosci. 22: 1鈥?4
    22. Mishra V, Mishra RK, Dikshit A, Pandey AC. 2014. Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In P Ahmad, S Rasool, Eds, Emerging Technologies and Management of Crop Stress Tolerance: Biological Techniques (Vol 1), Elsevier Inc., San Diego, pp 159鈥?80 CrossRef
    23. Mohammadi M, Doroodmand MM, Hoseini A, Habibagahi M. 2011. The effects of single walled carbon nanotubes (SWCNTs) on proliferation and apoptosis of human peripheral blood mononuclear cells (PBMCs). Clin. Biochem. 44: 290鈥?95 CrossRef
    24. Sarmiento C, Daood H, Pais I, Biacs PA. 1995. Effect of titanium ascorbate on lipoxygenase pathway of tomato and red pepper seedling. J. Plant Nutr. 18: 1291鈥?299 CrossRef
    25. Seeger EM, Baun A, Kastner M, Trapp S. 2009. Insignificant acute toxicity of TiO2 nano particles to willow trees. J. Soils Sediment. 9: 46鈥?3 CrossRef
    26. Sheykhbaglou R, Sedghi M, Tajbakhsh Shishevan M, Seyed Sharifi R. 2010. Effects of nano-iron oxide particles on agronomic traits of soybean. Not. Sci. Biol. 2: 112鈥?13
    27. Soleimani A, Doroodmand M, Sabaghi S. 2012. Comparative investigation on the correction factors of hydrogen permeability on CNTs-mixed matrix membrane. Int. J. Nano Dimensions 4: 217鈥?21
    28. Su AH, Lin KF, Zhang W, Xu SY, Yang SS. Zhang M, Zhang LY. 2009. Effect of nano-TiO2 on the germination and growth of rape seed. J. Agro-Environ. Sci. 9: 2鈥?9
    29. Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace. Elem. Res. 110: 179鈥?90 CrossRef
    30. Yang L, Watts DJ. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 158: 122鈥?32 CrossRef
    31. Zheng L, Hong F, Lu S, Liu C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 105: 839鈥?41
  • 刊物主题:Plant Sciences; Plant Genetics & Genomics; Plant Pathology; Plant Physiology; Biotechnology;
  • 出版者:Springer Netherlands
  • ISSN:2005-8276
文摘
The effects of nano-size titanium dioxide (N-TiO2) on the germination of tomato (Lycopersicum esculentum L.), onion (Allium cepa L.), and radish (Raphanus sativus L.) seeds were assessed in laboratory and greenhouse trials. Seeds were germinated in Petri dishes in a laboratory and in peat:perlite (1:1, v/v) in a greenhouse containing four concentrations of N-TiO2 (0, 100, 200, and 400 mg L-1). N-TiO2 at 100 and 200 mg L-1 had the most positive effect on germination. In the laboratory, the highest germination percentage of tomato and onion was observed at 100 mg L-1 (100 and 30%, respectively), and in radish, 100% germination was obtained with 400 mg L-1. In the greenhouse, seedlings were tallest after exposure to 400 and 200 mg L-1 for tomato and onion, respectively, and 400 and 100 mg L-1 for radish. N-TiO2 may serve as a seed-priming agent for horticultural crops.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700