Calretinin-positive L5a pyramidal neurons in the development of the paralemniscal pathway in the barrel cortex
详细信息    查看全文
  • 作者:Junhua Liu (1)
    Bin Liu (1)
    XiaoYun Zhang (1)
    Baocong Yu (1)
    Wuqiang Guan (3)
    Kun Wang (1)
    Yang Yang (1)
    Yifan Gong (1)
    Xiaojing Wu (1)
    Yuchio Yanagawa (4)
    Shengxi Wu (5)
    Chunjie Zhao (1) (2)

    1. Key Laboratory of Developmental Genes and Human Diseases
    ; MOE ; Department of Anatomy and Neuroscience ; Medical School ; Southeast University ; Nanjing ; 210009 ; PR China
    3. Institute of Neurobiology
    ; Institutes of Brain Science and State Key Laboratory of Medical Neurobiology ; Fudan University ; Shanghai ; 200032 ; PR China
    4. Department of Genetic and Behavioral Neuroscience
    ; Gunma University Graduate School of Medicine ; 3-39-22 Showa-machi ; Maebashi ; 371-8511 ; Japan
    5. Department of Anatomy
    ; Histology and Embryology ; K.K. Leung Brain Research Centre ; School of Basic Medicine ; Fourth Military Medical University ; Xi鈥檃n ; 710032 ; PR China
    2. Center of Depression
    ; Beijing Institute for Brain Disorders ; Beijing ; 100069 ; PR China
  • 关键词:Calretinin ; L5a pyramidal neuron ; Paralemniscal pathway ; Posterior medial nucleus ; Barrel cortex
  • 刊名:Molecular Brain
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:5,682 KB
  • 参考文献:1. Alloway, KD (2008) Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits. Cereb Cortex 18: pp. 979-989 CrossRef
    2. Lu, SM, Lin, RC (1993) Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10: pp. 1-16 CrossRef
    3. Erzurumlu, RS, Gaspar, P (2012) Development and critical period plasticity of the barrel cortex. Eur J Neurosci 35: pp. 1540-1553 CrossRef
    4. Bureau, I, Saint, PF, Svoboda, K (2006) Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol 4: pp. e382 CrossRef
    5. Feldmeyer, D (2012) Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat 6: pp. 24 CrossRef
    6. Lubke, J, Feldmeyer, D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 212: pp. 3-17 CrossRef
    7. Wimmer, VC, Bruno, RM, Kock, CP, Kuner, T, Sakmann, B (2010) Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cereb Cortex 20: pp. 2265-2276 CrossRef
    8. Schubert, D, Kotter, R, Luhmann, HJ, Staiger, JF (2006) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. Cereb Cortex 16: pp. 223-236 CrossRef
    9. Feldmeyer, D, Roth, A, Sakmann, B (2005) Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J Neurosci 25: pp. 3423-3431 CrossRef
    10. Larsen, DD, Wickersham, IR, Callaway, EM (2007) Retrograde tracing with recombinant rabies virus reveals correlations between projection targets and dendritic architecture in layer 5 of mouse barrel cortex. Front Neural Circuits 1: pp. 5
    11. Frick, A, Feldmeyer, D, Helmstaedter, M, Sakmann, B (2008) Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. Cereb Cortex 18: pp. 397-406 CrossRef
    12. Shepherd, GM, Svoboda, K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci 25: pp. 5670-5679 CrossRef
    13. Camp, AJ, Wijesinghe, R (2009) Calretinin: modulator of neuronal excitability. Int J Biochem Cell Biol 41: pp. 2118-2121 CrossRef
    14. Melvin, NR, Dyck, RH (2003) Developmental distribution of calretinin in mouse barrel cortex. Brain Res Dev Brain Res 143: pp. 111-114 CrossRef
    15. Caputi, A, Rozov, A, Blatow, M, Monyer, H (2009) Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. Cereb Cortex 19: pp. 1345-1359 CrossRef
    16. Barinka, F, Druga, R (2010) Calretinin expression in the mammalian neocortex: a review. Physiol Res 59: pp. 665-677
    17. Chen, B, Wang, SS, Hattox, AM, Rayburn, H, Nelson, SB, McConnell, SK (2008) The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc Natl Acad Sci U S A 105: pp. 11382-11387 CrossRef
    18. Cubelos, B, Sebastian-Serrano, A, Beccari, L, Calcagnotto, ME, Cisneros, E, Kim, S, Dopazo, A, Alvarez-Dolado, M, Redondo, JM, Bovolenta, P, Walsh, CA, Nieto, M (2010) Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 66: pp. 523-535 CrossRef
    19. Ince-Dunn, G, Hall, BJ, Hu, SC, Ripley, B, Huganir, RL, Olson, JM, Tapscott, SJ, Ghosh, A (2006) Regulation of thalamocortical patterning and synaptic maturation by NeuroD2. Neuron 49: pp. 683-695 CrossRef
    20. Hisaoka, T, Nakamura, Y, Senba, E, Morikawa, Y (2010) The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience 166: pp. 551-563 CrossRef
    21. Tamamaki, N, Yanagawa, Y, Tomioka, R, Miyazaki, J, Obata, K, Kaneko, T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467: pp. 60-79 CrossRef
    22. Sehara, K, Kawasaki, H (2011) Neuronal circuits with whisker-related patterns. Mol Neurobiol 43: pp. 155-162 CrossRef
    23. Li, H, Crair, MC (2011) How do barrels form in somatosensory cortex?. Ann N Y Acad Sci 1225: pp. 119-129 CrossRef
    24. Zhao, C, Guan, W, Pleasure, SJ (2006) A transgenic marker mouse line labels Cajal-Retzius cells from the cortical hem and thalamocortical axons. Brain Res 1077: pp. 48-53 CrossRef
    25. Gall, D, Roussel, C, Susa, I, D鈥橝ngelo, E, Rossi, P, Bearzatto, B, Galas, MC, Blum, D, Schurmans, S, Schiffmann, SN (2003) Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci 23: pp. 9320-9327
    26. Schiffmann, SN, Cheron, G, Lohof, A, d鈥橝lcantara, P, Meyer, M, Parmentier, M, Schurmans, S (1999) Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci U S A 96: pp. 5257-5262 CrossRef
    27. Schwaller, B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2: pp. a004051 CrossRef
    28. Schurmans, S, Schiffmann, SN, Gurden, H, Lemaire, M, Lipp, HP, Schwam, V, Pochet, R, Imperato, A, Bohme, GA, Parmentier, M (1997) Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice. Proc Natl Acad Sci U S A 94: pp. 10415-10420 CrossRef
    29. O鈥機onnor, DH, Huber, D, Svoboda, K (2009) Reverse engineering the mouse brain. Nature 461: pp. 923-929 CrossRef
    30. Gong, S, Doughty, M, Harbaugh, CR, Cummins, A, Hatten, ME, Heintz, N, Gerfen, CR (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27: pp. 9817-9823 CrossRef
    31. Veinante, P, Lavallee, P, Deschenes, M (2000) Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. J Comp Neurol 424: pp. 197-204 CrossRef
    32. Galvez, R, Gopal, AR, Greenough, WT (2003) Somatosensory cortical barrel dendritic abnormalities in a mouse model of the fragile X mental retardation syndrome. Brain Res 971: pp. 83-89 CrossRef
    33. Mazarakis, NK, Cybulska-Klosowicz, A, Grote, H, Pang, T, Dellen, A, Kossut, M, Blakemore, C, Hannan, AJ (2005) Deficits in experience-dependent cortical plasticity and sensory-discrimination learning in presymptomatic Huntington鈥檚 disease mice. J Neurosci 25: pp. 3059-3066 CrossRef
    34. Mao, T, Kusefoglu, D, Hooks, BM, Huber, D, Petreanu, L, Svoboda, K (2011) Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72: pp. 111-123 CrossRef
    35. Lefort, S, Tomm, C, Floyd Sarria, JC, Petersen, CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61: pp. 301-316 CrossRef
    36. Xu, X, Callaway, EM (2009) Laminar specificity of functional input to distinct types of inhibitory cortical neurons. J Neurosci 29: pp. 70-85 CrossRef
    37. Schubert, D, Staiger, JF, Cho, N, Kotter, R, Zilles, K, Luhmann, HJ (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21: pp. 3580-3592
    38. Hoffer, ZS, Arantes, HB, Roth, RL, Alloway, KD (2005) Functional circuits mediating sensorimotor integration: quantitative comparisons of projections from rodent barrel cortex to primary motor cortex, neostriatum, superior colliculus, and the pons. J Comp Neurol 488: pp. 82-100 CrossRef
    39. Alloway, KD, Crist, J, Mutic, JJ, Roy, SA (1999) Corticostriatal projections from rat barrel cortex have an anisotropic organization that correlates with vibrissal whisking behavior. J Neurosci 19: pp. 10908-10922
    40. Woolsey, TA, Loos, H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17: pp. 205-242 CrossRef
    41. Tian, C, Gong, Y, Yang, Y, Shen, W, Wang, K, Liu, J, Xu, B, Zhao, J, Zhao, C (2012) Foxg1 has an essential role in postnatal development of the dentate gyrus. J Neurosci 32: pp. 2931-2949 CrossRef
  • 刊物主题:Neurosciences; Neurology;
  • 出版者:BioMed Central
  • ISSN:1756-6606
文摘
Background The rodent barrel cortex has been established as an ideal model for studying the development and plasticity of a neuronal circuit. The barrel cortex consists of barrel and septa columns, which receive various input signals through distinct pathways. The lemniscal pathway transmits whisker-specific signals to homologous barrel columns, and the paralemniscal pathway transmits multi-whisker signals to both barrel and septa columns. The integration of information from both lemniscal and paralemniscal pathways in the barrel cortex is critical for precise object recognition. As the main target of the posterior medial nucleus (POm) in the paralemniscal pathway, layer 5a (L5a) pyramidal neurons are involved in both barrel and septa circuits and are considered an important site of information integration. However, information on L5a neurons is very limited. This study aims to explore the cellular features of L5a neurons and to provide a morphological basis for studying their roles in the development of the paralemniscal pathway and in information integration. Results 1. We found that the calcium-binding protein calretinin (CR) is dynamically expressed in L5a excitatory pyramidal neurons of the barrel cortex, and L5a neurons form a unique serrated pattern similar to the distributions of their presynaptic POm axon terminals. 2. Infraorbital nerve transection disrupts this unique alignment, indicating that it is input dependent. 3. The formation of the L5a neuronal alignment develops synchronously with barrels, which suggests that the lemniscal and paralemniscal pathways may interact with each other to regulate pattern formation and refinement in the barrel cortex. 4. CR is specifically expressed in the paralemniscal pathway, and CR deletion disrupts the unique L5a neuronal pattern, which indicates that CR may be required for the development of the paralemniscal pathway. Conclusions Our results demonstrate that L5a neurons form a unique, input-dependent serrated alignment during the development of cortical barrels and that CR may play an important role in the development of the paralemniscal pathway. Our data provide a morphological basis for studying the role of L5a pyramidal neurons in information integration within the lemniscal and paralemniscal pathways.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700