Effect of resveratrol and orchidectomy on the vasorelaxing influence of perivascular adipose tissue
详细信息    查看全文
  • 作者:Charlotte Boydens ; Bart Pauwels ; Johan Van de Voorde
  • 关键词:Perivascular adipose tissue ; Resveratrol ; Orchidectomy ; Vascular
  • 刊名:Heart and Vessels
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:31
  • 期:4
  • 页码:608-615
  • 全文大小:470 KB
  • 参考文献:1.Maenhaut N, Van de Voorde J (2011) Regulation of vascular tone by adipocytes. BMC Med 9:25CrossRef PubMed PubMedCentral
    2.Gollasch M, Dubrovska G (2004) Paracrine role for periadventitial adipose tissue in the regulation of arterial tone. Trends Pharmacol Sci 25:647–653CrossRef PubMed
    3.Lohn M, Dubrovska G, Lauterbach B, Luft FC, Gollasch M, Sharma AM (2002) Periadventitial fat releases a vascular relaxing factor. Faseb J 16:1057–1063CrossRef PubMed
    4.Soltis EE, Cassis LA (1991) Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness. Clin Exp Hypertens A 13:277–296PubMed
    5.Verlohren S, Dubrovska G, Tsang SY, Essin K, Luft FC, Huang Y, Gollasch M (2004) Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries. Hypertension 44:271–276CrossRef PubMed
    6.Dubrovska G, Verlohren S, Luft FC, Gollasch M (2004) Mechanisms of ADRF release from rat aortic adventitial adipose tissue. Am J Physiol Heart Circ Physiol 286:H1107–H1113CrossRef PubMed
    7.Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, Laing I, Yates AP, Pemberton PW, Malik RA, Heagerty AM (2009) Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation 119:1661–1670CrossRef PubMed
    8.Trayhurn P, Wang B, Wood IS (2008) Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 100:227–235CrossRef PubMed
    9.Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 455:479–492CrossRef PubMed PubMedCentral
    10.Ahn J, Lee H, Kim S, Ha T (2007) Resveratrol inhibits TNF-alpha-induced changes of adipokines in 3T3-L1 adipocytes. Biochem Biophys Res Commun 364:972–977CrossRef PubMed
    11.Derdemezis CS, Kiortsis DN, Tsimihodimos V, Petraki MP, Vezyraki P, Elisaf MS, Tselepis AD (2011) Effect of plant polyphenols on adipokine secretion from human SGBS adipocytes. Biochem Res Int 2011:285618CrossRef PubMed PubMedCentral
    12.Kang L, Heng W, Yuan A, Baolin L, Fang H (2010) Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: relative to inhibition of inflammatory responses. Biochimie 92:789–796CrossRef PubMed
    13.Kim S, Jin Y, Choi Y, Park T (2011) Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81:1343–1351CrossRef PubMed
    14.Olholm J, Paulsen SK, Cullberg KB, Richelsen B, Pedersen SB (2010) Anti-inflammatory effect of resveratrol on adipokine expression and secretion in human adipose tissue explants. Int J Obes (Lond) 34:1546–1553CrossRef
    15.Rosenow A, Noben JP, Jocken J, Kallendrusch S, Fischer-Posovszky P, Mariman EC, Renes J (2012) Resveratrol-induced changes of the human adipocyte secretion profile. J Proteome Res 11:4733–4743CrossRef PubMed
    16.Yen GC, Chen YC, Chang WT, Hsu CL (2011) Effects of polyphenolic compounds on tumor necrosis factor-alpha (TNF-alpha)-induced changes of adipokines and oxidative stress in 3T3-L1 adipocytes. J Agric Food Chem 59:546–551CrossRef PubMed
    17.Yu W, Fu YC, Wang W (2012) Cellular and molecular effects of resveratrol in health and disease. J Cell Biochem 113:752–759CrossRef PubMed
    18.Napoli C, Balestrieri ML, Sica V, Lerman LO, Crimi E, De Rosa G, Schiano C, Servillo L, D’Armiento FP (2008) Beneficial effects of low doses of red wine consumption on perturbed shear stress-induced atherogenesis. Heart Vessels 23:124–133CrossRef PubMed
    19.Combs TP, Berg AH, Rajala MW, Klebanov S, Iyengar P, Jimenez-Chillaron JC, Patti ME, Klein SL, Weinstein RS, Scherer PE (2003) Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes 52:268–276CrossRef PubMed
    20.Stubbins RE, Najjar K, Holcomb VB, Hong J, Nunez NP (2012) Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance. Diabetes Obes Metab 14:58–66CrossRef PubMed PubMedCentral
    21.Wang D, Wang C, Wu X, Zheng W, Sandberg K, Ji H, Welch WJ, Wilcox CS (2014) Endothelial dysfunction and enhanced contractility in microvessels from ovariectomized rats: roles of oxidative stress and perivascular adipose tissue. Hypertension 63:1063–1069CrossRef PubMed PubMedCentral
    22.Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, Matsuda M, Kondo H, Furuyama N, Kihara S, Nakamura T, Tochino Y, Funahashi T, Matsuzawa Y (2002) Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 51:2734–2741CrossRef PubMed
    23.Lanfranco F, Zitzmann M, Simoni M, Nieschlag E (2004) Serum adiponectin levels in hypogonadal males: influence of testosterone replacement therapy. Clin Endocrinol (Oxf) 60:500–507CrossRef
    24.Sih R, Morley JE, Kaiser FE, Perry HM 3rd, Patrick P, Ross C (1997) Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab 82:1661–1667CrossRef PubMed
    25.Gil-Ortega M, Condezo-Hoyos L, Garcia-Prieto CF, Arribas SM, Gonzalez MC, Aranguez I, Ruiz-Gayo M, Somoza B, Fernandez-Alfonso MS (2014) Imbalance between pro and anti-oxidant mechanisms in perivascular adipose tissue aggravates long-term high-fat diet-derived endothelial dysfunction. PLoS One 9:e95312CrossRef PubMed PubMedCentral
    26.Mendizabal Y, Llorens S, Nava E (2013) Vasoactive effects of prostaglandins from the perivascular fat of mesenteric resistance arteries in WKY and SHROB rats. Life Sci 93:1023–1032CrossRef PubMed
    27.Ozen G, Topal G, Gomez I, Ghorreshi A, Boukais K, Benyahia C, Kanyinda L, Longrois D, Teskin O, Uydes-Dogan BS, Norel X (2013) Control of human vascular tone by prostanoids derived from perivascular adipose tissue. Prostaglandins Other Lipid Mediat 107:13–17CrossRef PubMed
    28.Naderali EK, Smith SL, Doyle PJ, Williams G (2001) The mechanism of resveratrol-induced vasorelaxation differs in the mesenteric resistance arteries of lean and obese rats. Clin Sci (Lond) 100:55–60CrossRef
    29.Novakovic A, Bukarica LG, Kanjuh V, Heinle H (2006) Potassium channels-mediated vasorelaxation of rat aorta induced by resveratrol. Basic Clin Pharmacol Toxicol 99:360–364CrossRef PubMed
    30.Shen M, Zhao L, Wu RX, Yue SQ, Pei JM (2013) The vasorelaxing effect of resveratrol on abdominal aorta from rats and its underlying mechanisms. Vascul Pharmacol 58:64–70CrossRef PubMed
    31.Gordish KL, Beierwaltes WH (2014) Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging. Am J Physiol Renal Physiol 306:F542–F550CrossRef PubMed PubMedCentral
    32.Szewczuk LM, Forti L, Stivala LA, Penning TM (2004) Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents. J Biol Chem 279:22727–22737CrossRef PubMed
    33.Baker NA, English V, Sunkara M, Morris AJ, Pearson KJ, Cassis LA (2013) Resveratrol protects against polychlorinated biphenyl-mediated impairment of glucose homeostasis in adipocytes. J Nutr Biochem 24:2168–2174CrossRef PubMed PubMedCentral
    34.Krawczyk SA, Haller JF, Ferrante T, Zoeller RA, Corkey BE (2012) Reactive oxygen species facilitate translocation of hormone sensitive lipase to the lipid droplet during lipolysis in human differentiated adipocytes. PLoS One 7:e34904CrossRef PubMed PubMedCentral
    35.Cullberg KB, Olholm J, Paulsen SK, Foldager CB, Lind M, Richelsen B, Pedersen SB (2013) Resveratrol has inhibitory effects on the hypoxia-induced inflammation and angiogenesis in human adipose tissue in vitro. Eur J Pharm Sci 49:251–257CrossRef PubMed
    36.Rivera L, Moron R, Zarzuelo A, Galisteo M (2009) Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol 77:1053–1063CrossRef PubMed
    37.Jones TH (2011) Cardiovascular risk during androgen deprivation therapy for prostate cancer. BMJ 342:d3105CrossRef PubMed
    38.Bourghardt J, Wilhelmson AS, Alexanderson C, De Gendt K, Verhoeven G, Krettek A, Ohlsson C, Tivesten A (2010) Androgen receptor-dependent and independent atheroprotection by testosterone in male mice. Endocrinology 151:5428–5437CrossRef PubMed
    39.Nathan L, Shi W, Dinh H, Mukherjee TK, Wang X, Lusis AJ, Chaudhuri G (2001) Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. Proc Natl Acad Sci U S A 98:3589–3593CrossRef PubMed PubMedCentral
    40.Nettleship JE, Jones TH, Channer KS, Jones RD (2007) Physiological testosterone replacement therapy attenuates fatty streak formation and improves high-density lipoprotein cholesterol in the Tfm mouse: an effect that is independent of the classic androgen receptor. Circulation 116:2427–2434CrossRef PubMed
    41.Perez I, El Hafidi M, Carvajal K, Banos G (2009) Castration modifies aortic vasoreactivity and serum fatty acids in a sucrose-fed rat model of metabolic syndrome. Heart Vessels 24:147–155CrossRef PubMed
    42.Cohen PG (1999) The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt—a major factor in the genesis of morbid obesity. Med Hypotheses 52:49–51CrossRef PubMed
    43.Floryk D, Kurosaka S, Tanimoto R, Yang G, Goltsov A, Park S, Thompson TC (2011) Castration-induced changes in mouse epididymal white adipose tissue. Mol Cell Endocrinol 345:58–67CrossRef PubMed
    44.Sato T, Matsumoto T, Yamada T, Watanabe T, Kawano H, Kato S (2003) Late onset of obesity in male androgen receptor-deficient (AR KO) mice. Biochem Biophys Res Commun 300:167–171CrossRef PubMed
    45.Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP (2011) Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol 301:H1425–H1437CrossRef PubMed PubMedCentral
  • 作者单位:Charlotte Boydens (1)
    Bart Pauwels (1)
    Johan Van de Voorde (1)

    1. Department of Pharmacology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
    Cardiac Surgery
    Vascular Surgery
    Biomedical Engineering
    Interventional Radiology
    Ultrasound
  • 出版者:Springer Japan
  • ISSN:1615-2573
文摘
Perivascular adipose tissue (PVAT) releases several adipo(cyto)kines. Some are vasoactive substances that elicit a net beneficial anticontractile effect. Resveratrol and testosterone are known to modulate adipo(cyto)kine release from adipose tissue and could therefore influence the anticontractile effect of PVAT. In vitro tension measurements were performed using thoracic aorta segments with and without adipose tissue from sham-operated or orchidectomized male Swiss mice. Concentration–response curves to norepinephrine (NOR) were constructed in the presence and absence of resveratrol (10 μM, 15 min) or the relaxant effect of resveratrol (10–100 μM) was investigated after inducing tone with NOR (5 μM). Aortas with PVAT displayed significantly attenuated contractions to NOR compared with aortas without PVAT. In aortas without PVAT, resveratrol (10 μM) significantly decreased NOR responses and elicited concentration-dependent (10–100 µM) relaxations. However, in aortas with adherent PVAT, resveratrol (10 μM) neither decreased NOR responses, nor did resveratrol (10–100 µM) induce arterial relaxations. The anticontractile effect of PVAT was less pronounced in the presence of resveratrol and unaltered by orchidectomy. Orchidectomy did not influence contractions induced by NOR. Orchidectomy does not modulate the anticontractile capacity of PVAT, while resveratrol decreases the vasorelaxing influence of PVAT. The positive effects associated with resveratrol addition are neutralized by the presence of PVAT. This is thought to result from a dual effect of resveratrol: (1) inhibition of the influence of vasodilatory adipo(cyto)kines and (2) a direct relaxant effect on the vascular smooth muscle. Overall, the beneficial relaxing effect of resveratrol is lost in mice thoracic aorta surrounded by PVAT.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700