Effects of low temperature and low irradiance on the physiological characteristics and related gene expression of different pepper species
详细信息    查看全文
  • 作者:L. J. Ou (1)
    G. Wei (1)
    Z. Q. Zhang (1)
    X. Z. Dai (1)
    X. X. Zou (1)

    1. Vegetable Institution of Hunan Academy of Agricultural Science
    ; Hunan Changsha ; 410125 ; China
  • 关键词:adventitious root ; catalase ; chlorophyll content ; osmotic substances ; photosynthesis ; superoxide dismutase
  • 刊名:Photosynthetica
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:53
  • 期:1
  • 页码:85-94
  • 全文大小:1,660 KB
  • 参考文献:1. An F.Q., Yu L.F., Li F.H.: [Influence of low light and low temperature on microstructure of summer squash鈥檚 leaves.] 鈥?Crops 27: 45鈥?7, 2011. [In Chinese]
    2. An L.H., Chen L.Z., Hu Q.Q. / et al.: [Effects of cold stress to three non-heading chinese cabbage OguCMS and biochemical indexes of its maintaining line.] 鈥?Chin.Vege. 1: 19鈥?3, 2010. [In Chinese]
    3. Arnon D.I.: Copper enzymes in isolated chloroplasts phenoloxidases in / Beta vulgaris. 鈥?Plant Physiol. 24: 1鈥?5, 1949. CrossRef
    4. Bai C.Y., Gao S.F., Zhang Y., Chen C.: [Analysis of anatomical leaf structure and drought resistance in 12 varieties of walnut.] 鈥?Acta Agric. Boreal. 19: 125鈥?28, 2010. [In Chinese]
    5. Bartley G.E., Scolnik P.A.: Plant carotenoids: pigments for photoprotection, visual attraction, and human health. 鈥?Plant Cell 7: 1027鈥?038, 1995. CrossRef
    6. Britton G.: Structure and properties of carotenoids in relation to function. 鈥?FASEB J. 9: 1551鈥?558, 1995.
    7. Cai Y.L., Song Y.C.: [Adaptive characteristics and behavior of / Dalbergia millettii liana in subtropical evergreen broad-leaved forest of eastern China.] 鈥?Acta Ecol. Sin. 21: 216鈥?24, 2001. [In Chinese]
    8. Carvallo M.A., Pino M.T., Jekni膰 Z. / et al.: A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: / Solanum commersonii, / Solanum tuberosum, and / Arabidopsis thaliana. 鈥?J. Exp. Bot. 62: 3807鈥?819, 2011. CrossRef
    9. Chai W.C., Ma R.L., Jiao, Y.S., Xing, G.M.: [Influences of low temperature stress on pepper鈥檚 growth index and physiological index.] 鈥?Acta Bot. Boreal. 25: 168鈥?71, 2010. [In Chinese]
    10. Chinnusamy V., Zhu J., Zhu, K.: Cold stress regulation of gene expression in plants. 鈥?Trends Plant Sci. 12: 444鈥?51, 2007. CrossRef
    11. Deng, H.B., Che F.L., Xiao Y.H. / et al.: [Effects of low temperature stress during flowering period on pollen characters and flag leaf physiological and biochemical characteristics of rice.] 鈥?Chin. J. Appl. Ecol. 22: 66鈥?2, 2011. [In Chinese]
    12. Fan P.G., Li L.S., Duan W. / et al.: Photosynthesis of young apple trees in response to low sink demand under different air temperatures. 鈥?Tree Physiol. 30: 313鈥?25, 2010. CrossRef
    13. Fowler S., Thomashow M.F.: / Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the / CBF cold response pathway. 鈥?Plant Cell 14: 1675鈥?690, 2002. CrossRef
    14. Friend D.J.C.: The control of chlorophyll accumulation in leaves of marquis wheat by temperature and light intensity. I. The rate of chlorophyll accumulation and maximal absolute chlorophyll contents. 鈥?Physiol. Plantarum 13: 776鈥?85, 1960. CrossRef
    15. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. 鈥?Biochim. Biophys. Acta 900: 87鈥?2, 1989. CrossRef
    16. Gilmour S.J., Sebolt A.M., Salazar M.P. / et al.: Overexpression of the / Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. 鈥?Plant Physiol. 124: 1854鈥?865, 2000. CrossRef
    17. Guy C.L.: Cold acclimation and freezing stress tolerance: Role of protein metabolism. 鈥?Annu. Rev. Plant Phys. 41: 187鈥?23, 1990. CrossRef
    18. Hetherington S.E., He J., Smillie R.M.: Photoinhibition at low temperature in chilling-sensitive and resistant plants. 鈥?Plant Physiol. 90: 1609鈥?615, 1990. CrossRef
    19. Hatano-Iwasaki A., Ogawa K.: Overexpression of / GSH1 gene mimics transcriptional response to low temperature during seed vernalization treatment of / Arabidopsis. 鈥?Plant Cell Physiol. 53: 1195鈥?203, 2012. CrossRef
    20. He H.J., Kou S.R., Wang X.J.: [Effects of drought stress on photosynthetic characteristics and yield components of different plant types of corn.] 鈥?Agric. Res. Arid Areas 29: 63鈥?6, 2011. [In Chinese]
    21. He L.G.: [Expression and analysis of cold-responsive / CBF-like genes in citrus and related species under low temperature.] 鈥?Ph. D. Dissertation, Huzhong Agric. Univ., 2010. [In Chinese]
    22. Hodgson R.A., Raison J.K.: Inhibition of photosynthesis by chilling in moderate light: a comparison of plants sensitive and insensitive to chilling. 鈥?Planta 178: 545鈥?52, 1989. CrossRef
    23. Kendall S.L., Hellwege A., Marriot P. / et al.: Induction of dormancy in / Arabidopsis summer annuals requires parallel regulation of / DOG1 and hormone metabolism by low temperature and / CBF transcription factors. 鈥?Plant Cell 23: 2568鈥?580, 2011. CrossRef
    24. Li M., Yang D., Li W.: Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. 鈥?Photosynthetica 45: 222鈥?28, 2007. CrossRef
    25. Liang F., Zheng C.S., Sun X.Z., Wang W.L.: [Effects of low temperature- and weak light stress and its recovery on the photosynthesis and chlorophyll fluorescence parameters of cut flower chrysanthemum.] 鈥?Chin. J. Appl. Ecol. 21: 29鈥?5, 2010. [In Chinese]
    26. Lin C., Wang L.H., Fan T.Y., Kuo F.W.: Lipid content and composition during the oocyte development of two gorgonian coral species in relation to low temperature preservation. 鈥?PLOS ONE 7: e38689, 2012. CrossRef
    27. Liu H.S., Han J.F., Meng F.T., Du X.T.: [Effects of several physiological index related to resistance in sesame leaves under water-logging stress in soil.] 鈥?Plant Physiol. Commun. 37: 106鈥?08, 2001a. [In Chinese]
    28. Liu P., Meng Q.W., Zou Q. / et al.: Effects of cold-hardening on chilling-induced photoinhibition of photosynthesis and on xanthophyll cycle pigments in sweet pepper. 鈥?Photosynthetica 39: 467鈥?72, 2001b. CrossRef
    29. Liu W., Ai X.Z., Liang W.J. / et al.: [Effects of salicylic acid on the leaf photosynthesis and antioxidant enzyme activities of cucumber seedlings under low temperature and light intensity.] 鈥?Chin. J. Appl. Ecol. 20: 441鈥?45, 2009. [In Chinese]
    30. Onyango L.A., Dunstan R.H., Gottfries J. / et al.: Effect of low temperature on growth and ultra-structure of staphylococcus / spp. 鈥?PLOS ONE 7: e29031, 2012. CrossRef
    31. Ou L.J., Zhang Z.Q., Dai X.Z., Zou XX.: Molecular characteristics and expression of cytoplasmic genes in cytoplasmic male sterility of pepper ( / Capsicum annuum L.). 鈥?Acta Physiol. Plant. 34: 2033鈥?037, 2012. CrossRef
    32. Peng S.Q., Liu Y.L., Xie S.X.: [Response of water using efficiency and membrane permeability to drought stress in different varieties of / Flos lonicerae.] 鈥?North. Hortic. 35: 156鈥?58, 2011. [In Chinese]
    33. Peng W.X., Wang W.Q., Liang Y.H. / et al.: [The effect of water stress on the microstructure of / Glycyrrhica uralensis.] 鈥?J. Hebei Agric. Univ. 26: 46鈥?8, 2003. [In Chinese]
    34. Pickersgill B.: Genetic resources and breeding of / Capsicum spp. 鈥?Euphytica 96: 129鈥?33, 1997. CrossRef
    35. Prince J.P., Lackney V.K., Angeles C. / et al.: A survey of DNA polymorphism within the genus / Capsicum and the fingerprinting of pepper cultivars. 鈥?Genome 38: 224鈥?31, 1995. CrossRef
    36. Thomashow M.F.: Molecular genetics of cold acclimation in higher plant. 鈥?Adv. Genet. 28: 99鈥?31, 1990. CrossRef
    37. Thomashow M.F.: Plant cold acclimation: freezing tolerance genes and regulationary. 鈥?Annu. Rev. Plant Physiol. 50: 571鈥?99, 1999. CrossRef
    38. Thomashow M.F., Gilmour S.J., Stoekinger E.J. / et al.: Role of the / Arabidopsis CBF transcriptional activators in cold acclimation. 鈥?Physiol. Plantarum 112:171鈥?75, 2001. CrossRef
    39. Tsuneo K., Junko I.S., Hidehiro H. / et al.: Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants. 鈥?Plant Cell Physiol. 53: 1418鈥?431, 2012. CrossRef
    40. Wang Z.H., Guo X.P., Lv S.F. / et al.: [Effects of soil drought on starch accumulation of grain and activity of corresponding starch synthesis enzymes in different winter wheat varieties.] 鈥?Agric. Res. Arid Areas 29: 67鈥?4, 2011. [In Chinese]
    41. Xin Z.G., Browse J.: Cold comfort farm: the acclimation of plants to freezing temperatures. 鈥?Plant Cell Environ. 23: 893鈥?02, 2000. CrossRef
    42. Xie J.M., Yu J.H., Xie M.H., Feng Z.: [Changes of three osmotic regulatory metabolites in leaves of pepper under low temperature and poor light stress and relations between its and varietal tolerance.] 鈥?Acta Bot. Boreal. 29: 105鈥?10, 2009. [In Chinese]
    43. Xie J.M., Yu J.H., Huang G.B., Feng Z.: [Correlations between changes of absorption and transformation of light energy by PSII in pepper leaves and the variety tolerance under low temperature and weak light.] 鈥?Sci. Agric. Sin. 44: 1855鈥?862, 2011. [In Chinese]
    44. Xie J.M., Yu J.H., Huang G.B., Feng Z.: [Relationship between carotenoid content and low-light-tolerance or chilling- and low-light-tolerance of pepper varieties.] 鈥?Sci. Agric. Sin. 43: 4036鈥?044, 2010. [In Chinese]
    45. Xu R., Miao M.M., Cao B.S.: [Effect of low temperature and pollination on cucumber yield formation.] 鈥?Chin. Vege. 1: 53鈥?6, 2010. [In Chinese]
    46. Yang S.: [Expression and functional analysis of the / CBF3 in sweet pepper under chilling stress.] 鈥?Ph. D. Dissertation, Shandong Agric. Univ., 2011. [In Chinese]
    47. Yang R., Guan X.L., Zhang R.L. / et al.: [Changes of Ca2+ and Ca2+-ATPase in the mesophyll cells of / Euonymus japonicus 鈥楥uzhi鈥?/em> under cold stress.] 鈥?Acta Hortic. Sin. 40: 1139鈥?152, 2013. [In Chinese]
    48. Yang S., Tang X.F., Ma N.N. / et al.: Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco. 鈥?J. Plant Physiol. 168: 1804鈥?812, 2011. CrossRef
    49. Yu L.F., An F.Q., Li F.H., Tan D.H.: [Effect of low light and low temperature on anatomical structure of summer squash leaves.] 鈥?J. Changjiang Vege. 25: 44鈥?6, 2011. [In Chinese]
    50. Zhang H.Y., Mao X.G., Wang C.S., Jing R.L.: Overexpression of a common wheat gene / TaSnRK2.8 enhances tolerance to drought, salt and low temperature in / Arabidopsis. 鈥?PLOS ONE 5: e16041, 2010. CrossRef
    51. Zongren M.: [Study on free proline accumulation of seedling in many species of plant under water stress.] 鈥?Prata. Sci. 11: 15鈥?8, 1994. [In Chinese]
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-9058
文摘
Pepper is a thermophilous and heliophilic vegetable. In China, pepper is grown in greenhouse during winter and spring under lower temperature and irradiation. In this study, we investigated the effects of low temperature and low irradiance (LTLI) on the physiological characteristics and the expression of related genes in five pepper species, Capsicum annuum L. (CA), C. baccatum L. (CB), C. chinense Jacquin (CC), C. frutescens L. (CF), and C. pubescens Ruiz & Pavon (CP) in order to screen for greenhouse species that is resistant to such adverse conditions. We observed significant reductions not only in photosynthetic pigments and stomatal conductance but also in proline, total soluble sugar, enzyme activity, and root activity; disordered arrangements of leaf palisade and spongy tissues; and first rising and then falling expression of C-repeat binding factor (CBF3) and cold-regulated genes (CORc410). These results indicate that pepper is not resistant to LTLI. We also found that CP showed significantly higher photosynthetic activity, more proline and total soluble sugar, higher enzyme activity, higher root activity, higher CBF3 and CORc410 expression levels, more tightly packed leaf palisade and spongy tissues, and thicker bundle sheath than the other four species did under LTLI, while CF exhibited the lowest values for these indicators. It demonstrated significant differences in the ability to resist to LTLI among different species, with CP showing the strongest resistance, followed by CB. Therefore, we recommend the introduction of CP and CB to greenhouse cultivation to further screen for low temperature and low light-resistant pepper varieties to increase pepper production by strengthening intervariety hybridization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700