Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus
详细信息    查看全文
  • 作者:Mani Kikuchi ; Akihito Omori ; Daisuke Kurokawa…
  • 关键词:Anteroposterior axis ; Echinoderm ; Hox ; Sea cucumber
  • 刊名:Development Genes and Evolution
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:225
  • 期:5
  • 页码:275-286
  • 全文大小:2,507 KB
  • 参考文献:Angerer LM, Dolecki GJ, Gagnon ML, Lum R, Wang G, Yang Q, Humphreys T, Angerer RC (1989) Progressively restricted expression of a homeo box gene within the aboral ectoderm of developing sea urchin embryos. Genes Dev 3:370鈥?83CrossRef PubMed
    Arenas-Mena C, Martinez P, Cameron RA, Davidson EH (1998) Expression of the Hox gene complex in the indirect development of a sea urchin. Proc Natl Acad Sci U S A 95:13062鈥?3067PubMed Central CrossRef PubMed
    Arenas-Mena C, Cameron RA, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631鈥?643PubMed
    Arenas-Mena C, Cameron RA, Davidson EH (2006) Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo. Develop Growth Differ 48:463鈥?72CrossRef
    Aronowicz J, Lowe CJ (2006) Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Integr Comp Biol 46(6):890鈥?01CrossRef PubMed
    Baughman KW, McDougall C, Cummins SF, Hall M, Degnan BM, Satoh N, Shoguchi E (2014) Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster planci. Genesis 52:952鈥?58CrossRef PubMed
    Beck F, Tata F, Chawengsaksophak K (2000) Homeobox genes and gut development. BioEssays 22:431鈥?41CrossRef PubMed
    Bienz M (1994) Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet 10(1):22鈥?6CrossRef PubMed
    Bromham LD, Degnan BM (1999) Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate鈥?鈥塭chinoderm clade. Evol Dev 1:166鈥?71CrossRef PubMed
    Cameron CB, Garey JR, Swalla BJ (2000) Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci U S A 97:4469鈥?474PubMed Central CrossRef PubMed
    Cameron RA, Rowen L, Nesbitt R, Bloom S, Rast JP, Berney K, Arenas-Mena C, Martinez P, Lucas S, Richardson PM, Davidson EH, Peterson KJ, Hood L (2006) Unusual gene order and organization of the sea urchin Hox cluster. J Exp Zool B Mol Dev Evol 306B:45鈥?8CrossRef
    Cisternas P, Byrne M (2009) Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua. Dev Genes Evol 219:613鈥?18CrossRef PubMed
    Garcia-Fernandez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6:881鈥?92CrossRef PubMed
    Hano Y, Hayashi A, Yamaguchi S, Yamaguchi M (2001) Hox genes of the direct-type developing Sea urchin Peronella japonica. Zool Sci 18:353鈥?59CrossRef
    Hara Y, Yamaguchi M, Akasaka K, Nakano H, Nonaka M, Amemiya S (2006) Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Dev Genes Evol 216:797鈥?09CrossRef PubMed
    Holland PWH, Garcia-Fernandez (1996) Hox genes and chordate evolution. Dev Biol 173:382鈥?95CrossRef PubMed
    Ikuta T, Saiga H (2005) Organization of Hox genes in ascidians: present, past, and future. Dev Dyn 233:382鈥?89CrossRef PubMed
    Irvine SQ, Martindale MQ (2000) Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological boundaries. Dev Biol 217:333鈥?51CrossRef PubMed
    Ishii M, Mitsunaga-Nakatsubo K, Kitajima T, Kusunoki S, Shimada H, Akasaka K (1999) Hbox1 and Hbox7 are involved in pattern formation in sea urchin embryos. Develop Growth Differ 41:241鈥?52CrossRef
    Kato S, Tsurumaru S, Taga M, Yamana T, Shibata Y, Ohono K, Fujiwara A, Yamano K, Yoshikuni M (2009) Neuronal peptides induce oocyte maturation and gamete spawning of sea cucumber, Apostichopus japonicus. Dev Biol 326:169鈥?76CrossRef PubMed
    Kawazoe Y, Sekimoto T, Araki M, Takagi K, Araki K, Yamamura K (2002) Region-specific gastrointestinal Hox code during murine embryonal gut development. Develop Growth Differ 44:77鈥?4CrossRef
    Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191鈥?01CrossRef PubMed
    Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565鈥?70CrossRef PubMed
    Martinez P, Rast JP, Arenas-Mena C, Davidson EH (1999) Organization of an echinoderm Hox gene cluster. Proc Natl Acad Sci U S A 96:1469鈥?474PubMed Central CrossRef PubMed
    McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283鈥?02CrossRef PubMed
    Mendez AT, Roig-Lopez JL, Santiago P, Santiago C, Garcia-Arraras JE (2000) Identification of Hox gene sequences in the Sea cucumber Holothuria glaberrima selenka (holothuroidea: echinodermata). Mar Biotechnol (NY) 2(3):231鈥?40CrossRef
    Morris VB, Byrne M (2005) Involvement of Two Hox genes and Otx in echinoderm body-plan morphogenesis in the Sea urchin Holopneustes purpurescens. J Exp Zool B Mol Dev Evol 304B:456鈥?67CrossRef
    Morris VB, Byrne M (2014) Oral鈥揳boral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens. Dev Genes Evol 224:1鈥?1CrossRef PubMed
    Omori A, Akasaka K, Kurokawa D, Amemiya S (2011) Gene expression analysis of Six3, Pax6 and Otx in the early development of the stalked crinoid Metacrinus rotundus. Gene Expr Patterns 11:48鈥?6CrossRef PubMed
    Peterson KJ (2003) Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution deuterostome Hox genes. Mol Phylogenet Evol 31:1208鈥?215CrossRef
    Peterson KJ, Cameron RA, Davidson EH (1997) Set-aside cells in maximal indirect development: evolutionary and developmental significance. BioEssays 19:623鈥?31CrossRef PubMed
    Peterson KJ, Arenas-Mena C, Davidson EH (2000) The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evol Dev 2:93鈥?01CrossRef PubMed
    Popodi E, Kissinger JC, Andrews ME, Raff RA (1996) Sea urchin Hox genes: insights into the ancestral Hox cluster. Mol Biol Evol 13:1078鈥?086CrossRef PubMed
    Roberts DJ, Johnson RL, Burke AC, Nelson CE, Morgan BA (1995) Sonic hedgehog is an endodermal signal inducing BMP-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121:3163鈥?174
    Sakiyama J, Yokouchi Y, Kuroiwa A (2001) HoxA and HoxB cluster genes subdivide the digestive tract into morphological domains during chick development. Mech Dev 101:233鈥?36CrossRef PubMed
    Schubert M, Yu J, Holland ND, Escriva H, Laudet V, Holland LZ (2005) Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development 132:61鈥?3CrossRef PubMed
    Sharkey M, Graba Y, Scott MP (1997) Hox genes in evolution: protein surfaces and paralog groups. Trends Genet 13:145鈥?51CrossRef PubMed
    Shoguchi E, Harada Y, Numakunai T, Satoh N (2000) Expression of the Otx gene in the ciliary bands during Sea cucumber embryogenesis. Genesis 27:58鈥?3CrossRef PubMed
    Tsuchimoto J, Yamaguchi M (2014) Hox expression in the direct-type developing sand dollar Peronella japonica. Dev Dyn 243:1020鈥?029CrossRef PubMed
    Wada H, Satoh N (1994) Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci U S A 91:1801鈥?804PubMed Central CrossRef PubMed
    Wada H, Garcia-Fernandez J, Holland PWH (1999) Colinear and segmental expression of amphioxus Hox genes. Dev Biol 213:131鈥?41CrossRef PubMed
    Wilson KA, Andrews MA, Raff RA (2005) Dissociation of expression patterns of homeodomain transcription factors in the evolution of developmental mode in the sea urchins Heliocidaris tuberculata and H. erythrogramma. Evol Dev 7:401鈥?15CrossRef PubMed
    Yokouchi Y, Sakiyama J, Kuroiwa A (1995) Coordinated expression of Abd-B subfamily genes of the HoxA cluster in the developing digestive tract of chick embryo. Dev Biol 169:76鈥?9CrossRef PubMed
    Yoshida W, Tamai A, Yanaka T, Ishida S (2001) Normal development and artificial breeding of sea cucumber (Stichopus japonicus Selenka) from Mutsu Bay. Bull Fac Agric Life Sci Hirosaki Univ 4:16鈥?3 [In Japanese with English summary]
    Zakany J, Duboule D (1999) Hox genes and the making of sphincters. Nature 401:761鈥?62CrossRef PubMed
  • 作者单位:Mani Kikuchi (1)
    Akihito Omori (1)
    Daisuke Kurokawa (1)
    Koji Akasaka (1)

    1. Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Developmental Biology
    Neurosciences
    Cell Biology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-041X
文摘
The presence of an anteroposterior body axis is a fundamental feature of bilateria. Within this group, echinoderms have secondarily evolved pentameral symmetric body plans. Although all echinoderms present bilaterally symmetric larval stages, they dramatically rearrange their body axis and develop a pentaradial body plan during metamorphosis. Therefore, the location of their anteroposterior body axis in adult forms remains a contentious issue. Unlike other echinoderms, sea cucumbers present an obvious anteroposterior axis not rearranged during metamorphosis, thus representing an interesting group to study their anteroposterior axis patterning. Hox genes are known to play a broadly conserved role in anteroposterior axis patterning in deuterostomes. Here, we report the expression patterns of Hox genes from early development to pentactula stage in sea cucumber. In early larval stages, five Hox genes (AjHox1, AjHox7, AjHox8, AjHox11/13a, and AjHox11/13b) were expressed sequentially along the archenteron, suggesting that the role of anteroposterior patterning of the Hox genes is conserved in bilateral larvae of echinoderms. In doliolaria and pentactula stages, eight Hox genes (AjHox1, AjHox5, AjHox7, AjHox8, AjHox9/10, AjHox11/13a, AjHox11/13b, and AjHox11/13c) were expressed sequentially along the digestive tract, following a similar expression pattern to that found in the visceral mesoderm of other bilateria. Unlike other echinoderms, pentameral expression patterns of AjHox genes were not observed in sea cucumber. Altogether, we concluded that AjHox genes are involved in the patterning of the digestive tract in both larvae and metamorphosis of sea cucumbers. In addition, the anteroposterior axis in sea cucumbers might be patterned like that of other bilateria. Keywords Anteroposterior axis Echinoderm Hox Sea cucumber

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700