The Monotone Catenary Degree of Krull Monoids
详细信息    查看全文
  • 作者:Alfred Geroldinger ; Pingzhi Yuan
  • 关键词:11B13 ; 11P70 ; 13A05 ; 20M13 ; Non ; unique factorizations ; catenary degree ; Krull monoids
  • 刊名:Results in Mathematics
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:63
  • 期:3-4
  • 页码:999-1031
  • 全文大小:444KB
  • 参考文献:1. Blanco, V., García-Sánchez, P.A., Geroldinger, A.: Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids. Ill. J. Math. (in press)
    2. Chang G.-W.: Every divisor class of Krull monoid domains contains a prime ideal. J. Algebra 336, 370-77 (2011) CrossRef
    3. Chapman S.T., García-Sánchez P.A., Llena D.: The catenary and tame degree of numerical monoids. Forum Math. 21, 117-29 (2009) CrossRef
    4. Chapman S.T., García-Sánchez P.A., Llena D., Ponomarenko V., Rosales J.C.: The catenary and tame degree in finitely generated commutative cancellative monoids. Manuscr. Math. 120, 253-64 (2006) CrossRef
    5. Coykendall J., Smith W.W.: On unique factorization domains. J. Algebra 332, 62-0 (2011) CrossRef
    6. Delgado, M., García-Sánchez, P.A., Morais, J.: “Numericalsgps- a gap package on numerical semigroups. http://www.gap-system.org/Packages/numericalsgps.html
    7. Diaconis P., Graham R.L., Sturmfels B.: Primitive partition identities, combinatorics, Paul Erd?s is eighty. J. Bolyai Math. Soc. 1, 173-92 (1993)
    8. Foroutan A.: Monotone chains of factorizations. In: Badawi, A. (ed.) Focus on commutative rings research, pp. 107-30. Nova Science Publishers, New York (2006)
    9. Foroutan, A., Geroldinger, A.: Monotone chains of factorizations in C-monoids. In: Arithmetical Properties of Commutative Rings and Monoids, Lect. Notes Pure Appl. Math., vol. 241, pp. 99-13. Chapman & Hall/CRC, London (2005)
    10. Foroutan A., Hassler W.: Chains of factorizations and factorizations with successive lengths. Commun. Algebra 34, 939-72 (2006) CrossRef
    11. Freeze M., Schmid W.A.: Remarks on a generalization of the Davenport constant. Discrete Math. 310, 3373-389 (2010) CrossRef
    12. Geroldinger A.: Additive group theory and non-unique factorizations. In: Geroldinger, A., Ruzsa, I. (eds) Combinatorial Number Theory and Additive Group Theory. Advanced Courses in Mathematics CRM Barcelona, pp. 1-6. Birkh?user, Basel (2009) CrossRef
    13. Geroldinger A., Grynkiewicz D.J., Schaeffer G.J., Schmid W.A.: On the arithmetic of Krull monoids with infinite cyclic class group. J. Pure Appl. Algebra 214, 2219-250 (2010) CrossRef
    14. Geroldinger A., Grynkiewicz D.J., Schmid W.A.: The catenary degree of Krull monoids. I. J. Théor. Nombres Bordx. 23, 137-69 (2011) CrossRef
    15. Geroldinger, A., Halter-Koch, F.: Non-Unique Factorizations. In: Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, London (2006)
    16. Geroldinger A., Hassler W.: Arithmetic of Mori domains and monoids. J. Algebra 319, 3419-463 (2008) CrossRef
    17. Halter-Koch F.: Ideal Systems. An Introduction to Multiplicative Ideal Theory. Marcel Dekker, New York (1998)
    18. Hassler W.: Properties of factorizations with successive lengths in one-dimensional local domains. J. Commut. Algebra 1, 237-68 (2009) CrossRef
    19. Kainrath, F.: Arithmetic of Mori domains and monoids: the global case (manuscript)
    20. Kim H.: The distribution of prime divisors in Krull monoid domains. J. Pure Appl. Algebra 155, 203-10 (2001) CrossRef
    21. Kim H., Park Y.S.: Krull domains of generalized power series. J. Algebra 237, 292-01 (2001) CrossRef
    22. Lev V.F.: The rectifiability threshold in abelian groups. Combinatorica 28, 491-97 (2008) CrossRef
    23. Omidali, M.: The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences. Forum Math. (in press)
    24. Philipp A.: A characterization of arithmetical invariants by the monoid of relations II: The monotone catenary degree and applications to semigroup rings. Semigroup Forum 81, 424-34 (2010) CrossRef
    25. Philipp, A.: A precise result on the arithmetic of non-principal orders in algebraic number fields. J. Algebra Appl. (in press)
    26. Philipp A.: A characterization of arithmetical invariants by the monoid of relations. Semigroup Forum 81, 424-34 (2010) CrossRef
    27. Reinhart, A.: On integral domains that are C -monoids. Houston J. Math. (in press)
    28. Schmid, W.A.: The inverse problem associated to the Davenport constant for / C 2 ⊿ / C 2 ⊿ / C 2 / n , and applications to the arithmetical characterization of class groups. Electron. J. Comb. 18(1) (2011) (Research Paper 33)
  • 作者单位:Alfred Geroldinger (1)
    Pingzhi Yuan (2)

    1. Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universit?t Graz, Heinrichstrasse 36, 8010, Graz, Austria
    2. School of Mathematics, South China Normal University, 510631, Guangzhou, People’s Republic of China
  • ISSN:1420-9012
文摘
Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. The monotone catenary degree c mon (H) of H is the smallest integer m with the following property: for each ${a \in H}$ and each two factorizations z, z-of a with length |z| ≤?|z′|, there exist factorizations z?=?z 0, ... ,z k ?=?z-of a with increasing lengths—that is, |z 0| ≤?... ≤?|z k |—such that, for each ${i \in [1,k]}$ , z i arises from z i-1 by replacing at most m atoms from z i-1 by at most m new atoms. Up to now there was only an abstract finiteness result for c mon (H), but the present paper offers the first explicit upper and lower bounds for c mon (H) in terms of the group invariants of G.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700