Counting degenerate polynomials of fixed degree and bounded height
详细信息    查看全文
  • 作者:Artūras Dubickas ; Min Sha
  • 关键词:Degenerate polynomial ; Linear recurrence sequence ; Mahler measure ; Resultant ; 11C08 ; 11B37 ; 11R06
  • 刊名:Monatshefte f篓鹿r Mathematik
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:177
  • 期:4
  • 页码:517-537
  • 全文大小:502 KB
  • 参考文献:1.Barroero, F.: Counting algebraic integers of fixed degree and bounded height. Monatsh. Math. (2013). doi:10.-007/?s00605-013-0599-6
    2.Barroero, F., Widmer, M.: Counting lattice points and o-minimal structures. Int. Math. Res. Notices (2013). doi:10.-093/?imrn/?rnt102
    3.Boyd, D.W.: Irreducible polynomials with many roots of maximal modulus. Acta Arith. 68, 85-8 (1994)MathSciNet
    4.Cauchy, A.L.: Exercises de mathématique, 4ème année. De Bure Frères, Paris (1829)
    5.Chela, R.: Reducible polynomials. J. Lond. Math. Soc. 38, 183-88 (1963)MathSciNet View Article
    6.Chern, S., Vaaler, J.D.: The distribution of values of Mahler’s measure. J. Reine Angew. Math. 540, 1-7 (2001)MathSciNet View Article
    7.Cipu, M., Diouf, I., Mignotte, M.: Testing degenerate polynomials. Appl. Alg. Eng. Commun. Comp. 22, 289-00 (2011)MathSciNet View Article
    8.D?rge, K.: Absch?tzung der Anzahl der reduziblen polynome. Math. Ann. 160, 59-3 (1965)MathSciNet View Article
    9.Drungilas, P., Dubickas, A.: On subfields of a field generated by two conjugate algebraic numbers. Proc. Edinb. Math. Soc. 47, 119-23 (2004)MathSciNet View Article
    10.Dubickas, A.: Polynomials irreducible by Eisenstein’s criterion. Appl. Alg. Eng. Commun. Comp. 14, 127-32 (2003)MathSciNet View Article
    11.Dubickas, A.: Roots of unity as quotients of two roots of a polynomial. J. Aust. Math. Soc. 92, 137-44 (2012)MathSciNet View Article
    12.Dubickas, A.: On the number of reducible polynomials of bounded naive height. Manuscr. Math. 144, 439-56 (2014)MathSciNet View Article
    13.Dubickas, A., Sha, M.: Counting and testing dominant polynomials. http://?arxiv.?org/?abs/-407.-789 (2014)
    14.Everest, G., van der Poorten, A., Shparlinski, I.E., Ward, T.: Mathematical Surveys and Monographs. Recurrence sequences, vol. 104. American Mathematical Society, Providence (2003)View Article
    15.Ferguson, R.: Irreducible polynomials with many roots of equal modulus. Acta Arith. 78, 221-25 (1997)MathSciNet
    16.Heyman, R.: On the number of polynomials of bounded height that satisfy the Dumas criterion. J. Int. Seq. 17, 1-, Article 14.2.4 (2014)
    17.Heyman, R., Shparlinski, I.E.: On the number of Eisenstein polynomials of bounded height. Appl. Algebra Eng. Commun. Comp. 24, 149-56 (2013)MathSciNet View Article
    18.Isaacs, I.M.: Quotients which are roots of unity (solution of problem 6523). Am. Math. Mon. 95, 561-2 (1988)MathSciNet View Article
    19.Kuba, G.: On the distribution of reducible polynomials. Math. Slovaca 59, 349-56 (2009)MathSciNet View Article
    20.Masser, D., Vaaler, J.D.: Counting algebraic numbers with large height II. Trans. Am. Math. Soc. 359, 427-45 (2007)MathSciNet View Article
    21.Mignotte, M., ?tef?nescu, D.: Polynomials: An Algorithmic Approach. Springer, Singapore (1999)
    22.Schanuel, S.H.: Heights in number fields. Bull. Soc. Math. Fr. 107, 433-49 (1979)MathSciNet
    23.Pólya, G., Szeg?, G.: Problems and Theorems in Analysis, vol. II. Springer, Berlin, Heidelberg, New York (1976)
    24.Prasolov, V.V.: Polynomials. Algorithms and computation in mathematics, vol. 11. Springer, Berlin (2010)
    25.Schinzel, A.: Around Pólya’s theorem on the set of prime divisors of a linear recurrence. In: Saradha, N. (ed.) Diophantine Equations, pp. 225-33. Narosa Publishing House, New Dehli (2008)
    26.van der Waerden, B.L.: Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt. Monatshefte für Matematik Physik 43, 133-47 (1936)View Article
    27.Waldschmidt, M.: Grundlehren der Mathematischen Wissenschaften. Diophantine approximation on linear algebraic groups, vol. 326. Springer, Berlin (2000)
  • 作者单位:Artūras Dubickas (1)
    Min Sha (2)

    1. Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania
    2. School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia
  • 刊物主题:Mathematics, general;
  • 出版者:Springer Vienna
  • ISSN:1436-5081
文摘
In this paper, we give sharp upper and lower bounds for the number of degenerate monic (and arbitrary, not necessarily monic) polynomials with integer coefficients of fixed degree \(n \ge 2\) and height bounded by \(H \ge 2\). The polynomial is called degenerate if it has two distinct roots whose quotient is a root of unity. In particular, our bounds imply that non-degenerate linear recurrence sequences can be generated randomly.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700