Copula-based bivariate flood frequency analysis in a changing climate—A case study in the Huai River Basin, China
详细信息    查看全文
  • 作者:Kai Duan ; Yadong Mei ; Liping Zhang
  • 关键词:flood ; climate change ; copulas ; bivariate distribution
  • 刊名:Journal of Earth Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:37-46
  • 全文大小:2,155 KB
  • 参考文献:Arnell, N. W., Gosling, S. N., 2013. The Impacts of Climate Change on River Flow Regimes at the Global Scale. Journal of Hydrology, 486: 351–364. doi:10.1016/j.jhydrol.2013.02.010CrossRef
    Ben Aissia, M. A., Chebana, F., Ouarda, T. B. M. J., et al., 2011. Multivariate Analysis of Flood Characteristics in a Climate Change Context of the Watershed of the Baskatong Reservoir, Province of Québec, Canada. Hydrological Processes, 26(1): 130–142. doi:10.1002/hyp.8117CrossRef
    Correia, F. N., 1987. Multivariate Partial Duration Series in Flood Risk Analysis. In: Singh, V. P., ed., Hydrologic Frequency Modeling. Reidel, Dordrecht. 541–554CrossRef
    Cunnane, C., 1987. Review of Statistical Models for Flood Frequency Estimation. In: Singh, V. P., ed., Hydrologic Frequency Modeling. Reidel, Dordrecht. 49–95CrossRef
    Duan, K., Mei, Y. D., 2013. A Comparison Study of Three Statistical Downscaling Methods and Their Model-Averaging Ensemble for Precipitation Downscaling in China. Theoretical and Applied Climatology, 116(3/4): 707–719. doi:10.1007/s00704-013-1069-8
    Duan, K., Mei, Y. D., 2014. Comparison of Meteorological, Hydrological and Agricultural Drought Responses to Climate Change and Uncertainty Assessment. Water Resources Management, 28(14): 5039–5054. doi:10.1007/s11269-014-0789-6CrossRef
    Duan, K., Xiao, W. H., Mei, Y. D., et al., 2014. Multi-Scale Analysis of Meteorological Drought Risks Based on a Bayesian Interpolation Approach in Huai River Basin, China. Stochastic Environmental Research and Risk Assessment, 28(8): 1985–1998. doi:10.1007/s00477-014-0877-4CrossRef
    Goel, N. K., Seth, S. M., Chandra, S., 1998. Multivariate Modeling of Flood Flows. Journal of Hydraulic Engineering, 124(2): 146–155. doi:10.1061/(asce)0733-9429(1998)124:2(146)CrossRef
    IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In: Field, C. B., Barros, V. R., Dokken, D. J., et al., eds., Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York
    Joe, H., 1997. Multivariate Models and Dependence Concepts. Chapman & Hall, LondonCrossRef
    Klein, B., Pahlow, M., Hundecha, Y., et al., 2010. Probability Analysis of Hydrological Loads for the Design of Flood Control Systems Using Copulas. Journal of Hydrologic Engineering, 15(5): 360–369. doi:10.1061/(asce)he.1943-5584.0000204CrossRef
    Kotz, S., Nadarajah, S., 2000. Extreme Value Distributions: Theory and Applications. Imperial College Press, LondonCrossRef
    Madsen, H., Rasmussen, P. F., Rosbjerg, D., 1997. Comparison of Annual Maximum Series and Partial Duration Series Methods for Modeling Extreme Hydrologic Events: 1. At-Site Modeling. Water Resources Research, 33(4): 747–757. doi:10.1029/96wr03848CrossRef
    Nelson, R. B., 1999. An Introduction to Copulas. Springer, New YorkCrossRef
    Salvadori, G., De Michele, C., 2004. Frequency Analysis via Copulas: Theoretical Aspects and Applications to Hydrological Events. Water Resources Research, 40(12): W12511. doi:10.1029/2004wr003133CrossRef
    Seibert, J., 1997. Estimation of Parameter Uncertainty in the HBV Model. Nordic Hydrology, 28(4/5): 247–262
    Semenov, M. A., Brooks, R. J., Barrow, E. M., et al., 1998. Comparison of the WGEN and LARS-WG Stochastic Weather Generators for Diverse Climates. Climate Research, 10: 95–107CrossRef
    Semenov, M. A., Stratonovitch, P., 2010. Use of Multi-Model Ensembles from Global Climate Models for Assessment of Climate Change Impacts. Climate Research, 41: 1–14. doi:10.3354/cr00836CrossRef
    Singh, K., Singh, V. P., 1991. Derivation of Bivariate Probability Density Functions with Exponential Marginals. Stochastic Hydrology and Hydraulics, 5(1): 55–68. doi:10.1007/bf01544178CrossRef
    Sklar, K., 1959. Fonctions de Repartition an Dimensions et Leura Marges. Publ. Inst. Stat. Univ. Paris, 8: 229–231
    Yue, S., 2000. The Bivariate Lognormal Distribution to Model a Multivariate Flood Episode. Hydrological Processes, 14(14): 2575–2588. doi:10.1002/1099-1085(20001015)14:14<2575:: aid-hyp115>3.0.co;2-lCrossRef
    Yue, S., Wang, C. Y., 2004. A Comparison of Two Bivariate Extreme Value Distributions. Stochastic Environmental Research and Risk Assessment (SERRA), 18(2): 61–66. doi:10.1007/s00477-003-0124-xCrossRef
    Zhang, L., Singh, V. P., 2006. Bivariate Flood Frequency Analysis Using the Copula Method. Journal of Hydrologic Engineering, 11(2): 150–164. doi:10.1061/(asce)1084-0699(2006)11:2(150)CrossRef
    Zhang, L., Singh, V. P., 2007. Trivariate Flood Frequency Analysis Using the Gumbel-Hougaard Copula. Journal of Hydrologic Engineering, 12(4): 431–439. doi:10.1061/(asce)1084-0699(2007)12:4(431)CrossRef
  • 作者单位:Kai Duan (1) (2)
    Yadong Mei (1) (2)
    Liping Zhang (1) (2)

    1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
    2. Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan University, Wuhan, 430072, China
  • 刊物主题:Earth Sciences, general; Geotechnical Engineering & Applied Earth Sciences; Biogeosciences; Geochemistry; Geology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1867-111X
文摘
Copula-based bivariate frequency analysis can be used to investigate the changes in flood characteristics in the Huai River Basin that could be caused by climate change. The univariate distributions of historical flood peak, maximum 3-day and 7-day volumes in 1961–2000 and future values in 2061–2100 projected from two GCMs (CSIRO-MK3.5 and CCCma-CGCM3.1) under A2, A1B and B1 emission scenarios are analyzed and compared. Then, bivariate distributions of peaks and volumes are constructed based on the copula method and possible changes in joint return periods are characterized. Results indicate that the Clayton copula is more appropriate for historical and CCCma-CGCM3.1 simulating flood variables, while that of Frank and Gumbel are better fitted to CSIRO-MK3.5 simulations. The variations of univariate and bivariate return periods reveal that flood characteristics may be more sensitive to different GCMs than different emission scenarios. Between the two GCMs, CSIRO-MK3.5 evidently predicts much more severe flood conditions in future, especially under B1 scenario, whereas CCCma-CGCM3.1 generally suggests contrary changing signals. This study corroborates that copulas can serve as a viable and flexible tool to connect univariate marginal distributions of flood variables and quantify the associated risks, which may provide useful information for risk-based flood control. Key Words flood climate change copulas bivariate distribution

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700