Carbon Dioxide Dynamics and Sequestration in Mine Water and Waste
详细信息    查看全文
  • 作者:Natalie A. Kruse (1)
    William H. J. Strosnider (2)

    1. Voinovich School of Leadership and Public Affairs
    ; Ohio University ; Athens ; OH ; 45701 ; USA
    2. Environmental Engineering Program
    ; Center for Watershed Research & Service ; Saint Francis University ; Loretto ; PA ; 15940 ; USA
  • 关键词:Iron oxidation ; Acid mine drainage ; Passive treatment ; Active treatment ; Carbon footprint
  • 刊名:Mine Water and the Environment
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:34
  • 期:1
  • 页码:3-9
  • 全文大小:213 KB
  • 参考文献:1. American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Baltimore
    2. Atekwana EA, Fonyuy EW (2009) Dissolved inorganic carbon concentrations and stable carbon isotope ratios in streams polluted by variable amounts of acid mine drainage. J Hydrol 372:136鈥?48 CrossRef
    3. Birkham TK, Hendry MJ, Wassenaar LI, Mendoza CA, Lee ES (2003) Characterizing geochemical reactions in unsaturated mine waste-rock piles using gaseous O2, CO2, 12CO2, and 13CO2. Environ Sci Technol 37:496鈥?01 CrossRef
    4. Cravotta CA (2007) Passive aerobic treatment of net-alkaline, iron-laden drainage from a flooded underground anthracite mine, Pennsylvania, USA. Mine Water Environ 26:128鈥?49 CrossRef
    5. Cravotta CA, Geroni J (2013) Effects of CO2 degassing on pH and Fe(II) oxidation rates in coal mine effluents. In: Brown A, Figueroa L, Wolkersdorfer C (eds) Proceedings of the 2013 annual IMWA conference, Reliable Mine Water Technology, vol II, pp 949鈥?55
    6. Cravotta CA, Dugas DL, Brady KBC, Kovalchuck TE (1994) Effects of selective handling of pyritic, acid-forming materials on the chemistry of pore gas and ground water at a reclaimed surface coal mine, Clarion County, PA, USA. In: Proceedings of the international land reclamation and mine drainage conference and 3rd international conference on the abatement of acidic rock drainage (ICARD), Pittsburgh, PA, USA. USBM SP 06A 94, pp 365鈥?74
    7. Dere AL, Stehouwer RC (2011) Labile and stable nitrogen and carbon in mine soil reclaimed with manure-based amendments. Soil Sci Soc Am J 75(3):890鈥?97 CrossRef
    8. Fox JF, Campbell JE (2010) Terrestrial carbon disturbances from mountaintop mining increases lifecycle emission for clean coal. Environ Sci Technol 44(6):2144鈥?149 CrossRef
    9. Gbolo P, Lopez DL (2013) Chemical and geological control on surface water within the Shade River Watershed in Southeastern Ohio. J Environ Prot 4:1鈥?1 CrossRef
    10. Gehm HW (1944) Neutralization of acid waste waters with an up-flow expanded limestone bed. Sew Works J 16(1):104鈥?20
    11. Geroni JN, Sapsford DJ (2011) Kinetics of iron (II) oxidation determined in the field. Appl Geochem 26:1452鈥?457 CrossRef
    12. Glaesser W, Lerche I (2005) Carbon dioxide development in aerobic parts of lignite mining dumps: the influence of rising groundwater in the Sopuden-Zwenkau dump: II-quantitative models. Environ Geosci 12(3):153鈥?64 CrossRef
    13. Glaesser W, Nitzsche HM, Lerche I (2005) Carbon dioxide development in aerobic parts of lignite mining dumps: the influence of rising groundwater in the Sopuden-Zwenkau dump: I-observations and inferences. Environ Geosci 12(3):153鈥?64 CrossRef
    14. Goetz ER, Riefler RG (2014) Performance of steel slag leach beds in acid mine drainage treatment. Chem Eng J 240:579鈥?88 CrossRef
    15. Goetz ER, Riefler RG (in press) Geochemistry of CO2 in steel slag leach beds. Mine Water Environ. doi:10.1007/s10230-014-0290-8
    16. Hall J, Younger P, Glendinning S (2006) Is minewater a source of hazardous gas? In: Proceedings, 10th IAEG international congress, Geological Soc of London, UK
    17. Harrison AL, Power IM, Dipple GM (2013) Strategies for enhancing carbon sequestration in Mg-rich mine tailings. In: Brown A, Figueroa L, Wolkersdorfer C (eds) Proceedings, 2013 annual IMWA conference, reliable mine water technology, vol I, pp 593鈥?99
    18. Hedin RS, Hedin BC (in press) Increasing oceanic carbon fixation through Fe fertilization: opportunity for mine water? Mine Water Environ. doi:10.1007/s10230-014-0305-5
    19. Hedin RS, Watzlaf GR, Nairn RW (1994) Passive treatment of acid mine drainage with limestone. J Environ Qual 23:1338鈥?345 CrossRef
    20. Hengen TJ, Squillace MK, O鈥橲ullivan AD, Stone JJ (2014) Life cycle assessment analysis of active and passive acid mine drainage treatment technologies. Resour Conserv Recycl 86:160鈥?67 CrossRef
    21. Jacinthe P, Lal R (2006) Spatial variability of soil properties and trace gas fluxes in reclaimed mine land of southeastern Ohio. Geoderma 136:598鈥?08 CrossRef
    22. Jageman TC, Yokley RA, Heunisch GW (1988) The use of pre-aeration to reduce the cost of neutralizing acid mine drainage. In: Proceedings, 1988 mine drainage and surface mine reclamation conference, American Soc for Surface Mining and Reclamation (ASMR), USBM IC 9184, Pittsburgh, PA, USA pp 131鈥?35. http://www.asmr.us/Publications/Conference%20Proceedings/1988%20papers/Jageman%20131-135.pdf
    23. Jarvis AP (2006) The role of dissolved carbon dioxide in governing deep coal mine water quality and determining treatment process selection. In: Barnhisel RI (ed) Proceedings, 7th ICARD, St. Louis MO, USA, pp 833鈥?43. http://www.imwa.info/docs/imwa_2006/0833-Jarvis-UK.pdf
    24. Johnson DB (2003) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Poll 3:47鈥?6 CrossRef
    25. Kempka T, Fern谩ndez-Steeger T, Li D, Schulten M, Schl眉ter R, Kroos BM (2001) Carbon dioxide sorption capacities of coal gasification residues. Environ Sci Technol 45:1719鈥?723 CrossRef
    26. Kern DM (1960) The hydration of carbon dioxide. J Chem Educ 37(1):14鈥?3 CrossRef
    27. Kirby CS, Cravotta CA (2005a) Net alkalinity and net acidity 1: theoretical considerations. Appl Geochem 20:1920鈥?940 CrossRef
    28. Kirby CS, Cravotta CA (2005b) Net alkalinity and net acidity 2: practical considerations. Appl Geochem 20:1941鈥?964 CrossRef
    29. Kirby CS, Thomas HM, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Appl Geochem 14:511鈥?30 CrossRef
    30. Kirby CS, Dennis A, Kahler A (2009) Aeration to degas CO2, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage. Appl Geochem 24:1175鈥?184 CrossRef
    31. Kruse N, Brewster K, Bowman J, Riefler RG (2012) Alkalinity production as an indicator of failure in steel slag leach beds treating acid mine drainage. Environ Earth Sci 67(5):1389鈥?395 CrossRef
    32. Macy TR, Kruse NA, Stuart BJ (in press) Carbon footprint analysis of source water for hydraulic fracturing: a case study of mine water versus freshwater. Mine Water Environ. doi:10.1007/s10230-014-0291-7
    33. McAllan J, Banks D, Beyer N, Watson I (2009) Alkalinity, temporary (CO2) and permanent acidity: an empirical assessment of the significance of field and laboratory determinations on mine waters. Geochem Explor Environ A 9:299鈥?12 CrossRef
    34. Means B, Beam PGR, Mercer J (in press) Analysis of hydrated lime consumption in circumneutral underground coal mine drainage treatment. Mine Water Environ. doi:10.1007/s10230-014-0308-2
    35. Meyer NA, Vogeli JU, Becker M, Broadhurst JL, Reid DL, Franzidis JP (2014) Mineral carbonation of PGM mine tailings for CO2 storage in South Africa: a case study. Miner Eng 59:45鈥?1 CrossRef
    36. Mills SJ, Wilson SA, Dipple GM, Radusepp M (2010) The decomposition of konyaite: importance in CO2 fixation in mine tailings. Mineral Mag 74(5):903鈥?17 CrossRef
    37. Mudd GM, Diesendorf M (2008) Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency. Environ Sci Technol 42:2624鈥?630 CrossRef
    38. Nairn RW, LaBar JA, Strevett KA, Strosnider WH, Morris D, Neely CA, Garrido A, Santamaria B, Oxenford L, Kauk K, Carter S, Furneaux B (2010) A large, multi-cell, ecologically-engineered passive treatment system for ferruginous lead鈥搝inc mine waters. In: Proceedings, IMWA symposium, Sydney, NS, Canada
    39. Norgate T, Haque N (2010) Energy and greenhouse gas impacts of mining and mineral processing operations. J Clean Prod 18(3):266鈥?74 CrossRef
    40. Paktunc AD (1999) Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ Geol 39(2):103鈥?12 CrossRef
    41. P茅rez-L贸pez R, Castillo J, Quispe D, Nieto JM (2010) Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste. J Hazard Mater 177:762鈥?72 CrossRef
    42. Power IM, Wilson SA, Dipple GM (2013a) Serpentite carbonation for CO2 sequestration. Elements 9:115鈥?21 CrossRef
    43. Power IM, Harrison AL, Dipple GM, Southam G (2013b) Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation. Int J Greenh Gas Control 16:145鈥?55 CrossRef
    44. Raymond PA, Oh N (2009) Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: insights on the impact of coal mining on regional and global carbon and sulfur budgets. Earth Planet Sci Lett 284:50鈥?6 CrossRef
    45. Romanov VN, Ackman TE, Soong Y, Kleinmann RL (2009) CO2 storage in shallow underground and surface coal mines: challenges and opportunities. Environ Sci Technol 43(3):561鈥?64 CrossRef
    46. Rose AW, Cravotta III CA (1998) Geochemistry of coal-mine drainage. In: Brady, KBC, Smith, MW, Schueck, J (eds) Coal mine drainage prediction and pollution prevention, Harrisburg, PA, Pennsylvania Dept of Environmental Protection, Harrisburg, PA, USA, pp 1.1鈥?.22
    47. Salm J-O, Maddison M, Tammik S, Soosaar K, Truu J, Mander U (2012) Emissions of CO2, CH4 and N2O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia 692:41鈥?5 CrossRef
    48. Shrestha RK, Lal R (2006) Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environ Int 32:781鈥?96 CrossRef
    49. Sibrell PL, Watten BJ, Friedrich AE, Vinci BJ (2000) ARD remediation with limestone in a CO2 pressurized reactor. In: Proceedings, 5th ICARD, vol 2, Denver, CO, USA, pp 1017鈥?026
    50. Sracek O, Gzyl G, Frolik A, Kubica J, Bzowski Z, Gwo藕dziewicz M, Kura K (2010) Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland. Environ Monit Assess 165:233鈥?54 CrossRef
    51. Strosnider WHJ, L贸pez FSL, LaBar JA, Palmer KJ, Nairn RW (2014) Unabated acid mine drainage from Cerro Rico de Potos铆, Bolivia: uncommon constituents of concern impact the Rio Pilcomayo headwaters. Environ Earth Sci 71:3223鈥?234 CrossRef
    52. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York City
    53. Sundh I, Nilsson M, Mikkel盲 C, Granberg G, Svensson BH (2000) Fluxes of methane and carbon dioxide on peat-mining areas in Sweden. Ambio 29(8):499鈥?03
    54. Tripathi N, Singh RS, Nathanail CP (2014) Mine spoil acts as a sink of carbon dioxide in Indian dry tropical environment. Sci Tot Environ 468鈥?69:1162鈥?171 CrossRef
    55. Tuazon D, Corder GD (2008) Life cycle assessment of seawater neutralized red mud for treatment of acid mine drainage. Resour Conserv Recycl 52:1307鈥?314 CrossRef
    56. Watten BJ, Sibrell PL, Schwartz MF (2004) Effect of acidity and elevated \( {\text{P}}_{{{\text{CO}}_{ 2} }} \) PCO2 on acid neutralization within pulsed limestone bed reactors receiving coal mine drainage. Environ Eng Sci 21(6):786鈥?02 CrossRef
    57. Wilson SA, Barker SLL, Dipple GM, Atudorei V (2010) Isotopic disequilibrium during uptake of atmospheric CO2 into mine process waters: implications for CO2 sequestration. Environ Sci Technol 44(254):9522鈥?529 CrossRef
    58. Wilson SA, Harrison AL, Dipple GM, Power IM, Barker SLL, Mayer KU, Fallon SJ, Raudsepp M, Southam G (2014) Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. Int J Greenh Gas Control 25:121鈥?40 CrossRef
    59. Winfrey BK, Nairn RW, Tilley DR, Strosnider WHJ (in press) Emergy and carbon footprint analysis of the construction of passive and active treatment systems for net alkaline mine drainage. Mine Water Environ. doi:10.1007/s10230-014-0304-6
    60. Wolkersdorfer C, Bowell R (eds) (2004a) Contemporary reviews of mine water studies in Europe, parts 1. Mine Water Environ 23:162鈥?82
    61. Wolkersdorfer C, Bowell R (eds) (2004b) Contemporary reviews of mine water studies in Europe, parts 2. Mine Water Environ 24:2鈥?7
    62. Wolkersdorfer C, Bowell R (eds) (2004c) Contemporary reviews of mine water studies in Europe, parts 3. Mine Water Environ 23:58鈥?6
    63. Wood CR (1996) Water quality of large discharges from mines in the anthracite region of Eastern Pennsylvania. USGS Water-Resources Investigations Report 95-4243, Washington, DC, USA
    64. Younger PL, Mayes WM (in press) The potential use of exhausted open pit mine voids as sinks for atmospheric CO2: insights from natural reedbeds and mine water treatment wetlands. Mine Water Environ. doi:10.1007/s10230-014-0293-5
    65. Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Kluwer, Dordrecht CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Applied Geosciences
    Mineral Resources
    Structural Foundations and Hydraulic Engineering
    Soil Science and Conservation
    Waste Management and Waste Technology
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-1068
文摘
The role and importance of CO2 in the mining sector has been overlooked until relatively recently. This review presents the complexities of CO2 and mine water evolution . Carbon sequestration using mine waters and solid wastes and recent research on the profound impacts of dissolved CO2 on active and passive treatment were reviewed. The literature indicates great promise for more efficient and fiscally competitive operations, lower environmental impacts, and a decreased carbon footprint for such operations. However, a tremendous amount of research and field testing is necessary to move many of these approaches forward to full scale common application.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700