Parabolic contractions of semisimple Lie algebras and their invariants
详细信息    查看全文
  • 作者:Dmitri I. Panyushev (1)
    Oksana S. Yakimova (2)
  • 关键词:Algebra of invariants ; Coadjoint representation ; Contraction ; Richardson orbit ; 13A50 ; 14L30 ; 17B08 ; 17B45 ; 22E46
  • 刊名:Selecta Mathematica, New Series
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:19
  • 期:3
  • 页码:699-717
  • 全文大小:369KB
  • 参考文献:1. Borho, W., Kraft, H.: über Bahnen und deren deformationen bei Aktionen reduktiver Gruppen. Comment. Math. Helv. 54, 61-04 (1979) CrossRef
    2. Brion, M.: Invariants et covariants des groupes algébriques réductifs. In: Théorie des invariants et géometrie des variétés quotients (Travaux en cours, t. 61), pp. 83-68, Hermann, Paris (2000)
    3. Broer, A.: Line bundles on the cotangent bundle of the flag variety. Invent. Math. 113, 1-0 (1993) CrossRef
    4. Cerulli Irelli, G., Feigin, E., Reineke, M.: Quiver Grassmannians and degenerate flag varieties. Algebra Number Theory 6(1), 165-94 (2012) CrossRef
    5. Charbonnel, J.-Y., Moreau, A.: The index of centralizers of elements of reductive Lie algebras. Doc. Math. 15, 387-21 (2010)
    6. Feigin, E.: Degenerate flag varieties and the median Genocchi numbers. Math. Res. Lett. 18(6), 1163-178 (2011)
    7. Feigin, E.: ${\mathbb{G}}_a^{M}$ -degeneration of flag varieties. Selecta Math. 18, 513-37 (2012)
    8. Feigin, E.: The median Genocchi numbers, $q$ -analogues and continued fractions. Eur. J. Comb. 33(8), 1913-918 (2012) CrossRef
    9. Feigin, E., Fourier, G., Littelmann, P.: PBW filtration and bases for irreducible modules in type $A_n$ . Transform. Groups 16, 71-9 (2011) CrossRef
    10. Feigin, E., Fourier, G., Littelmann, P.: PBW filtration and bases for symplectic Lie algebras. Int. Math. Res. Notices 2011(24), 5760-784 (2011)
    11. Igusa, J.-I.: Geometry of absolutely admissible representations. In: Number Theory, Algebraic Geometry and Commutative Algebra, pp. 373-52. Kinokuniya, Tokyo (1973)
    12. Kempken, G.: Induced conjugacy classes in classical Lie-algebras. Abh. Math. Sem. Univ. Hamburg 53, 53-3 (1983) CrossRef
    13. Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327-04 (1963) CrossRef
    14. Kurtzke, J.F.: Centers of centralizers in reductive algebraic groups. Comm. Algebra 19, 3393-410 (1991) CrossRef
    15. Panyushev, D.: The index of a Lie algebra, the centraliser of a nilpotent element, and the normaliser of the centraliser. Math. Proc. Camb. Philos. Soc. 134(1), 41-9 (2003) CrossRef
    16. Panyushev, D.: Semi-direct products of Lie algebras and their invariants. Publ. R.I.M.S. 43(4), 1199-257 (2007) CrossRef
    17. Panyushev, D.: On the coadjoint representation of ${\mathbb{Z}}_{2}$ -contractions of reductive Lie algebras. Adv. Math. 213, 380-04 (2007) CrossRef
    18. Panyushev, D., Premet, A., Yakimova, O.: On symmetric invariants of centralisers in reductive Lie algebras. J. Algebra 313, 343-91 (2007) CrossRef
    19. Panyushev, D., Yakimova, O.: On a remarkable contraction of semisimple Lie algebras. Ann. Inst. Fourier 62(6), 2053-068 (2012) CrossRef
    20. Premet, A.: Special transverse slices and their enveloping algebras. Adv. Math. 170, 1-5 (2002) CrossRef
    21. Ra?s, M.: L’indice des produits semi-directs $E\times _{\rho }$ . C.R. Acad. Sci. Paris Ser. A t.287, 195-97 (1978)
    22. Richardson, R.W.: Conjugacy classes in parabolic subgroups of semisimple algebraic groups. Bull. Lond. Math. Soc. 6, 21-4 (1974) CrossRef
    23. Slodowy, P.: Simple singularities and simple algebraic groups. In: Lecture Notes in Mathematics 815, Springer, Berlin (1980)
    24. Steinberg, R.: Conjugacy classes in algebraic groups. In: Lecture Notes in Mathematics 366, Springer, Berlin (1974)
    25. Yakimova, O.: A counterexample to Premet’s and Joseph’s conjectures. Bull. Lond. Math. Soc. 39(5), 749-54 (2007) CrossRef
    26. Yakimova, O.: One-parameter contractions of Lie-Poisson brackets. J. Eur. Math. Soc. (to appear) [=arXiv: 1202.3009]
  • 作者单位:Dmitri I. Panyushev (1)
    Oksana S. Yakimova (2)

    1. Institute for Information Transmission Problems, Russian Academy of Sciences, B. Karetnyi per. 19, 127994, Moscow, Russia
    2. Mathematisches Institut, Friedrich-Schiller-Universit?t Jena, Jena, Deutschland
文摘
Let $G$ be a connected semisimple algebraic group with Lie algebra $\mathfrak{g }$ and $P$ a parabolic subgroup of $G$ with $\mathrm{Lie\, }P=\mathfrak{p }$ . The parabolic contraction $\mathfrak{q }$ of $\mathfrak{g }$ is the semi-direct product of $\mathfrak{p }$ and a $\mathfrak{p }$ -module $\mathfrak{g }/\mathfrak{p }$ regarded as an abelian ideal. We are interested in the polynomial invariants of the adjoint and coadjoint representations of $\mathfrak{q }$ . In the adjoint case, the algebra of invariants is easily described and it turns out to be a graded polynomial algebra. The coadjoint case is more complicated. Here we found a connection between symmetric invariants of $\mathfrak{q }$ and symmetric invariants of centralisers $\mathfrak{g }_e\subset \mathfrak{g }$ , where $e\in \mathfrak{g }$ is a Richardson element with polarisation $\mathfrak{p }$ . Using this connection and results of Panyushev et al. (J Algebra 313:343-91, 2007), we prove that the algebra of symmetric invariants of $\mathfrak{q }$ is free for all parabolic subalgebras in types $\mathbf A$ and $\mathbf C$ and some parabolics in type $\mathbf B$ . This technique also applies to the minimal parabolic subalgebras in all types. For $\mathfrak{p }=\mathfrak{b }$ , a Borel subalgebra of $\mathfrak{g }$ , one gets a contraction of $\mathfrak{g }$ recently introduced by Feigin (Selecta Math 18:513-37, 2012) and studied from invariant-theoretic point of view in our previous paper (Panyushev and Yakimova in Ann Inst Fourier 62(6):2053-068, 2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700