Drug-inducible synergistic gene silencing with multiple small hairpin RNA molecules for gene function study in animal model
详细信息    查看全文
  • 作者:Ming Ying (1) (2)
    Guangfeng Chen (1)
    Yu Qiu (1)
    Xiujuan Shi (1)
    Chen Zhang (1)
    Qiuke Wang (1)
    Shuzhang Yang (1)
    Lixia Lu (1)
    Qionglan Yuan (1)
    Guotong Xu (1)
    Zibing Jin (3)
    Qiang Wu (4)
    Xiaoqing Liu (1) (2)

    1. Shanghai Tenth People鈥檚 Hospital
    ; Tongji University School of Medicine ; 301 Yanchangzhong Rd. ; Shanghai ; 200072 ; China
    2. Shenzhen Key Laboratory of Marine Bioresources and Ecology
    ; College of Life Sciences ; Shenzhen University ; 3688 Nanhai Ave. ; Shenzhen ; 518060 ; China
    3. Division of Ophthalmic Genetics
    ; The Eye Hospital of Wenzhou Medical College and Lab for Stem Cell and Retinal Regeneration ; School of Ophthalmology and Optometry ; Wenzhou Medical College ; No. 270 ; West Xueyuan Rd. ; Wenzhou ; 325027 ; China
    4. Department of Ophthalmology
    ; Affiliated Sixth People鈥檚 Hospital ; Shanghai Jiao Tong University ; No. 600 Yishan Rd. ; Shanghai ; 200233 ; China
  • 关键词:RNAi ; shRNA ; Gene targeting ; Gene silencing ; Drug ; inducible
  • 刊名:Transgenic Research
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:24
  • 期:2
  • 页码:309-317
  • 全文大小:2,971 KB
  • 参考文献:1. Boch, J, Scholze, H, Schornack, S, Landgraf, A, Hahn, S, Kay, S, Lahaye, T, Nickstadt, A, Bonas, U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: pp. 1509-1512 CrossRef
    2. Bockamp, E, Christel, C, Hameyer, D, Khobta, A, Maringer, M, Reis, M, Heck, R, Cabezas-Wallscheid, N, Epe, B, Oesch-Bartlomowicz, B (2007) Generation and characterization of tTS-H4: a novel transcriptional repressor that is compatible with the reverse tetracycline-controlled TET-ON system. J Gene Med 9: pp. 308-318 CrossRef
    3. Chadderton, N, Millington-Ward, S, Palfi, A, O鈥橰eilly, M, Tuohy, G, Humphries, MM, Li, T, Humphries, P, Kenna, PF, Farrar, GJ (2009) Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol Ther 17: pp. 593-599 CrossRef
    4. Chen GF, Shi XJ, Sun C, Li M, Zhou Q, Zhang C, Huang J, Qiu Y, Wen XY, Zhang Y et al (2013) VEGF-mediated proliferation of human adipose tissue-derived stem cells. PloS One 8:e73673
    5. Cho, SW, Kim, S, Kim, JM, Kim, JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31: pp. 230-232 CrossRef
    6. Cong, L, Ran, FA, Cox, D, Lin, SL, Barretto, R, Habib, N, Hsu, PD, Wu, XB, Jiang, WY, Marraffini, LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: pp. 819-823 CrossRef
    7. Frederick, JM, Krasnoperova, NV, Hoffmann, K, Church-Kopish, J, Ruther, K, Howes, K, Lem, J, Baehr, W (2001) Mutant rhodopsin transgene expression on a null background. Invest Ophthalmol Vis Sci 42: pp. 826-833
    8. Freundlieb, S, Schirra-Muller, C, Bujard, H (1999) A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med 1: pp. 4-12 CrossRef
    9. Gaj, T, Guo, J, Kato, Y, Sirk, SJ, Barbas, CF (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9: pp. 805-807 CrossRef
    10. Gaj, T, Gersbach, CA, Barbas, CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31: pp. 397-405 CrossRef
    11. Garneau, JE, Dupuis, ME, Villion, M, Romero, DA, Barrangou, R, Boyaval, P, Fremaux, C, Horvath, P, Magadan, AH, Moineau, S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: pp. 67-71 CrossRef
    12. Henriksen, JR, Lokke, C, Hammero, M, Geerts, D, Versteeg, R, Flaegstad, T, Einvik, C (2007) Comparison of RNAi efficiency mediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines. Nucleic Acids Res 35: pp. e67 CrossRef
    13. Kanatsu-Shinohara, M, Ikawa, M, Takehashi, M, Ogonuki, N, Miki, H, Inoue, K, Kazuki, Y, Lee, J, Toyokuni, S, Oshimura, M (2006) Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proc Natl Acad Sci USA 103: pp. 8018-8023 CrossRef
    14. Lai, JF, Cheng, HY, Cheng, TL, Lin, YY, Chen, LC, Lin, MT, Jou, TS (2004) Doxycycline- and tetracycline-regulated transcriptional silencer enhance the expression level and transactivating performance of rtTA. J Gene Med 6: pp. 1403-1413 CrossRef
    15. Lamartina, S, Silvi, L, Roscilli, G, Casimiro, D, Simon, AJ, Davies, ME, Shiver, JW, Rinaudo, CD, Zampaglione, I, Fattori, E (2003) Construction of an rtTA2(s)-M2/tTS(kid)-based transcription regulatory switch that displays no basal activity, good inducibility, and high responsiveness to doxycycline in mice and non-human primates. Mol Ther 7: pp. 271-280 CrossRef
    16. Lambeth, LS, Smith, CA (2013) Short hairpin RNA-mediated gene silencing. Methods Mol Biol 942: pp. 205-232 CrossRef
    17. Lem, J, Krasnoperova, NV, Calvert, PD, Kosaras, B, Cameron, DA, Nicolo, I, Makino, CL, Sidman, RL (1999) Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc Natl Acad Sci USA 96: pp. 736-741 CrossRef
    18. Li, TS, Sandberg, MA, Pawlyk, BS, Rosner, B, Hayes, KC, Dryja, TP, Berson, EL (1998) Effect of vitamin A supplementation on rhodopsin mutants threonine-17 鈫?methionine and proline-347 鈫?serine in transgenic mice and in cell cultures. Proc Natl Acad Sci USA 95: pp. 11933-11938 CrossRef
    19. Miller, JC, Tan, SY, Qiao, GJ, Barlow, KA, Wang, JB, Xia, DF, Meng, XD, Paschon, DE, Leung, E, Hinkley, SJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29: pp. 143-149 CrossRef
    20. Moscou, MJ, Bogdanove, AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326: pp. 1501 CrossRef
    21. Naash, MI, Hollyfield, JG, al-Ubaidi, MR, Baehr, W (1993) Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc Natl Acad Sci USA 90: pp. 5499-5503 CrossRef
    22. Olsson, JE, Gordon, JW, Pawlyk, BS, Roof, D, Hayes, A, Molday, RS, Mukai, S, Cowley, GS, Berson, EL, Dryja, TP (1992) Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 9: pp. 815-830 CrossRef
    23. Osakada, F, Ikeda, H, Mandai, M, Wataya, T, Watanabe, K, Yoshimura, N, Akaike, A, Sasai, Y, Takahashi, M (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26: pp. 215-224 CrossRef
    24. Palczewski, K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75: pp. 743-767 CrossRef
    25. Santiago, Y, Chan, E, Liu, PQ, Orlando, S, Zhang, L, Urnov, FD, Holmes, MC, Guschin, D, Waite, A, Miller, JC (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 105: pp. 5809-5814 CrossRef
    26. Sung, YH, Baek, IJ, Kim, DH, Jeon, J, Lee, J, Lee, K, Jeong, D, Kim, JS, Lee, HW (2013) Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31: pp. 23-24 CrossRef
    27. Urnov, FD, Miller, JC, Lee, YL, Beausejour, CM, Rock, JM, Augustus, S, Jamieson, AC, Porteus, MH, Gregory, PD, Holmes, MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435: pp. 646-651 CrossRef
    28. Urnov, FD, Rebar, EJ, Holmes, MC, Zhang, HS, Gregory, PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11: pp. 636-646 CrossRef
    29. Wang, HY, Yang, H, Shivalila, CS, Dawlaty, MM, Cheng, AW, Zhang, F, Jaenisch, R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153: pp. 910-918 CrossRef
    30. Wood, AJ, Lo, TW, Zeitler, B, Pickle, CS, Ralston, EJ, Lee, AH, Amora, R, Miller, JC, Leung, E, Meng, XD (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333: pp. 307 CrossRef
    31. Zhu, Z, Ma, B, Homer, RJ, Zheng, T, Elias, JA (2001) Use of the tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem 276: pp. 25222-25229 CrossRef
    32. Zhu, Z, Zheng, T, Lee, CG, Homer, RJ, Elias, JA (2002) Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol 13: pp. 121-128 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Molecular Medicine
    Plant Genetics and Genomics
    Animal Genetics and Genomics
    Plant Sciences
    Human Genetics
  • 出版者:Springer Netherlands
  • ISSN:1573-9368
文摘
Gene targeting is a critical tool for construction of disease models. However, the application of traditional homologous recombination-mediated gene knockout technology is limited by the absence of rapid frequency-guaranteed targeting methods. Although conventional small hairpin RNA (shRNA)-mediated gene silencing offers an alternative for gene targeting, its application is frequently compromised by lower expression efficiency via RNA interference compared to gene knockout. Here we provide an efficient gene targeting strategy involving drug-inducible synergistic silencing with multiple shRNA molecules. On induction, the levels of the target proteins decreased to undetectable levels in all the tested stable transgenic mammalian cell lines, including HEK293 and embryonic stem cell-derived progenies carrying shRNA silencing cassettes. In a transgenic mouse model carrying a silencing cassette targeting the rhodopsin gene, short-time inducer treatment was sufficient to ablate the rhodopsin protein in the retina, resulting in similar retinal phenotypic changes as those observed in rhodopsin mutant mice. Therefore, on a broad basis, this inducible shRNA gene targeting strategy offers a true gene knockout alternative comparable to conventional RNA interference approaches.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700