Highly-ordered silicon inverted nanocone arrays with broadband light antireflectance
详细信息    查看全文
  • 作者:Dong Zhang (1)
    Weina Ren (2)
    Zhichao Zhu (2)
    Haifeng Zhang (2)
    Bo Liu (2)
    Wangzhou Shi (1)
    Xiaomei Qin (1)
    Chuanwei Cheng (2)

    1. Department of Physics
    ; Shanghai Normal University ; No.100 Guilin Road ; Shanghai ; 200234 ; PR China
    2. Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology and School of Physics Science and Engineering
    ; Tongji University ; 1239 Siping Road ; Shanghai ; 200092 ; PR China
  • 关键词:Inverted nanocone arrays ; Antireflection ; Nanosphere lithography ; Si
  • 刊名:Nanoscale Research Letters
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:1
  • 全文大小:2,057 KB
  • 参考文献:1. Bergmann RB. Crystalline Si thin-film solar cells: a review. Appl Phys A. 1999;69:187鈥?4. CrossRef
    2. Yoo J, Dhungel SK, Yi J. Properties of plasma enhanced chemical vapor deposited silicon nitride for the application in multicrystalline silicon solar cells. Thin Solid Films. 2007;515:5000鈥?. CrossRef
    3. Li M, Shen H, Zhuang L, Chen D, Liang X. SiO2 antireflection coatings fabricated by electron-beam evaporation for black monocrystalline silicon solar cells. Int J Photoenergy. 2014;2014:67043.
    4. Haase C, Stiebig H. Thin-film silicon solar cells with efficient periodic light trapping texture. Appl Phys Lett. 2007;91:061116. CrossRef
    5. Shir D, Yoon J, Chanda D, Ryu JH, Rogers JA. Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement. Nano Lett. 2010;10:3041鈥?. CrossRef
    6. Lu Y, Lal A. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett. 2010;10:4651鈥?. CrossRef
    7. Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells. Proc Natl Acad Sci U S A. 2010;107:17491鈥?. CrossRef
    8. Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater. 2010;9:239鈥?4. CrossRef
    9. Tsakalakos L, Balch J, Fronheiser J, Korevaar BA, Sulima O, Rand J. Silicon nanowire solar cells. Appl Phys Lett. 2007;91:233117. CrossRef
    10. Hu L, Chen G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 2007;7:3249鈥?2. CrossRef
    11. Mariani G, Scofield AC, Hung CH, Huffaker DL. GaAs nanopillar-array solar cells employing in situ surface passivation. Nat Commun. 2013;4:1497. CrossRef
    12. Han SE, Chen G. Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells. Nano Lett. 2010;10:4692鈥?. CrossRef
    13. Chen HL, Chuang SY, Lin CH, Lin YH. Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. Opt Express. 2007;15:14793鈥?03. CrossRef
    14. Hsu CM, Connor ST, Tang MX, Cui Y. Wafer-scale silicon nanopillars and nanocones by Langmuir鈥揃lodgett assembly and etching. Appl Phys Lett. 2008;93:133109. CrossRef
    15. Zhu J, Yu Z, Burkhard GF, Hsu CM, Connor ST, Xu Y, et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2008;9:279鈥?2. CrossRef
    16. Lin YR, Lai KY, Wang HP, He JH. Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties. Nanoscale. 2010;2:2765鈥?. CrossRef
    17. Stavenga DG, Foletti S, Palasantzas G, Arikawa K. Light on the moth-eye corneal nipple array of butterflies. Proc R Soc B. 2006;273:661鈥?. CrossRef
    18. Adachi MM, Labelle AJ, Thon SM, Lan X, Hoogland S, Sargent EH. Broadband solar absorption enhancement via periodic nanostructuring of electrodes. Sci Rep. 2013;3:2928.
    19. Leung SF, Zhang Q, Xiu F, Yu D, Ho JC, Li D, et al. Light management with nanostructures for optoelectronic devices. J Phys Chem Lett. 2014;5:1479鈥?5. CrossRef
    20. Hutley MC. In diffraction gratings (techniques of physics). London: Academic Press; 1982.
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
In this work, highly-ordered silicon inverted nanocone arrays are fabricated by integration of nanosphere lithography with reactive ion etching (RIE) method. The optical characteristics of as-prepared Si inverted nanocone arrays are investigated both by experiments and simulations. It is found that the Si nanocone arrays present excellent broadband light antireflectance properties, which are attributed to the gradient in the effective refractive index of nanocones and enhanced light trapping owing to optical diffraction. The inverted Si nanocone arrays might find a variety of applications in solar cells and photodetectors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700