DNA vaccine-mediated innate immune response triggered by PRRs in teleosts
详细信息    查看全文
  • 作者:Takashi Aoki (1)
    Tomokazu Takano (2)
    Jun-ichi Hikima (3)

    1. Institute for Nanoscience and Nanotechnology
    ; Waseda University Center for Advanced Biomedical Sciences (TWIns) ; 2-2 Wakamatsu-cho ; Shinjuku-ku ; Tokyo ; 162-8480 ; Japan
    2. Aquatic Animal Health Division
    ; National Research Institute of Aquaculture ; Fisheries Research Agency ; 422-1 Nakatsuhamaura ; Minami-ise ; Mie ; 516-0193 ; Japan
    3. Department of Biochemistry and Applied Biosciences
    ; Faculty of Agriculture ; University of Miyazaki ; 1-1 Gakuen Kibanadai-nishi ; Miyazaki ; 889-2192 ; Japan
  • 关键词:DNA vaccine ; Innate immunity ; Pattern recognition receptors (PRRs) ; Nucleic acid sensing ; Type I interferon (IFN)
  • 刊名:Fisheries Science
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:81
  • 期:2
  • 页码:205-217
  • 全文大小:1,027 KB
  • 参考文献:1. H氓stein, T, Gudding, R, Evensen, O (2005) Bacterial vaccines for fish鈥揳n update of the current situation worldwide. Dev Biol (Basel) 121: pp. 55-74
    2. Aoki, T, Hikima, J, Castillo, CSD, Jung, TS, Kondo, H, Hirono, I Molecular immunity in the interaction between fish and pathogen for DNA vaccine. In: Bondad-Reantaso, MG eds. (2008) Proceedings of the Seventh Symposium on diseases in Asian Aquaculture VII. Asian Fisheries Society, Fish Health Section, pp. 253-267
    3. Coban, C, Koyama, S, Takeshita, F, Akira, S, Ishii, KJ (2008) Molecular and cellular mechanisms of DNA vaccines. Hum Vaccin 4: pp. 453-456
    4. Anderson, ED, Mourich, DV, Fahrenkrug, SC, LaPatra, S, Shepherd, J, Leong, JA (1996) Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Mol Mar Biol Biotechnol 5: pp. 114-122
    5. Lorenzen, N, Lorenzen, E, Einer-Jensen, K, Heppell, J, Wu, T, Davis, HL (1998) Protective immunity to VHS in rainbow trout (Oncorhynchus mykiss, Walbaum) following DNA vaccination. Fish Shellfish Immunol 8: pp. 261-270
    6. Salonius, K, Simard, N, Harland, R, Ulmer, JB (2007) The road to licensure of a DNA vaccine. Curr Opin Investig Drugs 8: pp. 635-641
    7. Corbeil, S, LaPatra, SE, Anderson, ED, Kurath, G (2000) Nanogram quantities of a DNA vaccine protect rainbow trout fry against heterologous strains of infectious hematopoietic necrosis virus. Vaccine 18: pp. 2817-2824
    8. Lorenzen, E, Einer-Jensen, K, Martinussen, T, LaPatra, SE, Lorenzen, N (2000) DNA vaccination of rainbow trout against viral hemorrhagic septicemia virus: a dose-response and time-course study. J Aquat Anim Health 12: pp. 167-180
    9. Lorenzen, N, LaPatra, SE (2005) DNA vaccines for aquacultured fish. Rev Sci Tech 24: pp. 201-213
    10. Takano, T, Iwahori, A, Hirono, I, Aoki, T (2004) Development of a DNA vaccine against hirame rhabdovirus and analysis of the expression of immune-related genes after vaccination. Fish Shellfish Immunol 17: pp. 367-374
    11. de las Heras, AI, Rodr铆guez Saint-Jean, S, P茅rez-Prieto, SI (2010) Immunogenic and protective effects of an oral DNA vaccine against infectious pancreatic necrosis virus in fish. Fish Shellfish Immunol 28: pp. 562-570
    12. Caipang, CM, Takano, T, Hirono, I, Aoki, T (2006) Genetic vaccines protect red seabream, Pagrus major, upon challenge with red seabream iridovirus (RSIV). Fish Shellfish Immunol 21: pp. 130-138
    13. Kanellos, T, Sylvester, ID, D鈥橫ello, F, Howard, CR, Mackie, A, Dixon, PF, Chang, KC, Ramstad, A, Midtlyng, PJ, Russell, PH (2006) DNA vaccination can protect Cyprinus carpio against spring viraemia of carp virus. Vaccine 24: pp. 4927-4933
    14. Jiao, XD, Zhang, M, Hu, YH, Sun, L (2009) Construction and evaluation of DNA vaccines encoding Edwardsiella tarda antigens. Vaccine 27: pp. 5195-5202
    15. Sun, Y, Liu, CS, Sun, L (2011) Comparative study of the immune effect of an Edwardsiella tarda antigen in two forms: subunit vaccine vs DNA vaccine. Vaccine 29: pp. 2051-2057
    16. Sun, Y, Liu, CS, Sun, L (2011) Construction and analysis of the immune effect of an Edwardsiella tarda DNA vaccine encoding a D15-like surface antigen. Fish Shellfish Immunol 30: pp. 273-279
    17. Pasnik, DJ, Smith, SA (2005) Immunogenic and protective effects of a DNA vaccine for Mycobacterium marinum in fish. Vet Immunol Immunopathol 103: pp. 195-206
    18. Pasnik, DJ, Smith, SA (2006) Immune and histopathologic responses of DNA-vaccinated hybrid striped bass Morone saxatilis 脳 M. chrysops after acute Mycobacterium marinum infection. Dis Aquat Organ 73: pp. 33-34
    19. Kurobe, T, Yasuike, M, Kimura, T, Hirono, I, Aoki, T (2005) Expression profiling of immune-related genes from Japanese flounder Paralichthys olivaceus kidney cells using cDNA microarrays. Dev Comp Immunol 29: pp. 515-523
    20. Byon, JY, Ohira, T, Hirono, I, Aoki, T (2005) Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (Paralichthys olivaceus) following DNA vaccination. Fish Shellfish Immunol 18: pp. 135-147
    21. Byon, JY, Ohira, T, Hirono, I, Aoki, T (2006) Comparative immune responses in Japanese flounder, Paralichthys olivaceus after vaccination with viral hemorrhagic septicemia virus (VHSV) recombinant glycoprotein and DNA vaccine using a microarray analysis. Vaccine 24: pp. 921-930
    22. Yasuike, M, Kondo, H, Hirono, I, Aoki, T (2007) Difference in Japanese flounder, Paralichthys olivaceus gene expression profile following hirame rhabdovirus (HIRRV) G and N protein DNA vaccination. Fish Shellfish Immunol 23: pp. 531-541
    23. Yasuike, M, Kondo, H, Hirono, I, Aoki, T (2011) Gene expression profile of HIRRV G and N protein gene vaccinated Japanese flounder, Paralichthys olivaceus during HIRRV infection. Comp Immunol Microbiol Infect Dis 34: pp. 103-110
    24. Traxler, GS, Anderson, E, LaPatra, SE, Richard, J, Shewmaker, B, Kurath, G (1999) Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV. Dis Aquat Organ 38: pp. 183-190
    25. McLauchlan, PE, Collet, B, Ingerslev, E, Secombes, CJ, Lorenzen, N, Ellis, AE (2003) DNA vaccination against viral haemorrhagic septicaemia (VHS) in rainbow trout: size, dose, route of injection and duration of protection鈥攅arly protection correlates with Mx expression. Fish Shellfish Immunol 15: pp. 39-50
    26. Purcell, MK, Laing, KJ, Winton, JR (2012) Immunity to fish rhabdoviruses. Viruses 4: pp. 140-166
    27. Castro, R, Mart铆nez-Alonso, S, Fischer, U, Haro, N脕, Soto-Lampe, V, Wang, T, Secombes, CJ, Lorenzen, N, Lorenzen, E, Tafalla, C (2014) DNA vaccination against a fish rhabdovirus promotes an early chemokine-related recruitment of B cells to the muscle. Vaccine 32: pp. 1160-1168
    28. LaPatra, SE, Corbeil, S, Jones, GR, Shewmaker, WD, Kurath, G (2000) The dose-dependent effect on protection and humoral response to a DNA vaccine against IHN virus in subyearling rainbow trout. J Aquat Anim Health 12: pp. 181-188
    29. Somamoto, T, Nakanishi, T, Okamoto, N (2002) Role of specific cell-mediated cytotoxicity in protecting fish from viral infections. Virology 297: pp. 120-127
    30. Somamoto, T, Koppang, EO, Fischer, U (2014) Antiviral functions of CD8(+) cytotoxic T cells in teleost fish. Dev Comp Immunol 43: pp. 197-204
    31. Lorenzen, N, Lorenzen, E, Einer-Jensen, K, LaPatra, SE (2002) Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens. Dev Comp Immunol 26: pp. 173-179
    32. Caipang, CM, Hirono, I, Aoki, T (2003) In vitro inhibition of fish rhabdoviruses by Japanese flounder, Paralichthys olivaceus Mx. Virology 317: pp. 373-382
    33. Haller, O, Kochs, G (2002) Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic 3: pp. 710-717
    34. Samuel, CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14: pp. 778-809
    35. Guo, J, Hui, DJ, Merrick, WC, Sen, GC (2000) A new pathway of translational regulation mediated by eukaryotic initiation factor 3. EMBO J 19: pp. 6891-6899
    36. Langevin, C, Aa, LM, Houel, A, Torhy, C, Briolat, V, Lunazzi, A, Harmache, A, Bremont, M, Levraud, JP, Boudinot, P (2013) Zebrafish ISG15 exerts a strong antiviral activity against RNA and DNA viruses and regulates the interferon response. J Virol 87: pp. 10025-10036
    37. Purcell, MK, Nichols, KM, Winton, JR, Kurath, G, Thorgaard, GH, Wheeler, P, Hansen, JD, Herwig, RP, Park, LK (2006) Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus. Mol Immunol 43: pp. 2089-2106
    38. Akira, S (2011) Innate immunity and adjuvants. Philos Trans R Soc Lond B Biol Sci 366: pp. 2748-2755
    39. Langevin, C, Aleksejeva, E, Passoni, G, Palha, N, Levraud, JP, Boudinot, P (2013) The antiviral innate immune response in fish: evolution and conservation of the IFN system. J Mol Biol 425: pp. 4904-4920
    40. Stevenson, FK, Ottensmeier, CH, Rice, J (2010) DNA vaccines against cancer come of age. Curr Opin Immunol 22: pp. 264-270
    41. Coban, C, Ishii, KJ, Gursel, M, Klinman, DM, Kumar, N (2005) Effect of plasmid backbone modification by different human CpG motifs on the immunogenicity of DNA vaccine vectors. J Leukoc Biol 78: pp. 647-655
    42. Coban, C, Kobiyama, K, Aoshi, T, Takeshita, F, Horii, T, Akira, S, Ishii, KJ (2011) Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther 11: pp. 479-484
    43. H酶lvold, LB, Myhr, AI, Dalmo, RA (2014) Strategies and hurdles using DNA vaccines to fish. Vet Res 45: pp. 21
    44. Lemaitre, B, Nicolas, E, Michaut, L, Reichhart, JM, Hoffmann, JA (1996) The dorsoventral regulatory gene cassette sp盲tzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: pp. 973-983
    45. Iwasaki, A, Medzhitov, R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5: pp. 987-995
    46. Akira, S, Uematsu, S, Takeuchi, O (2006) Pathogen recognition and innate immunity. Cell 124: pp. 783-801
    47. Matsushima, N, Tanaka, T, Enkhbayar, P, Mikami, T, Taga, M, Yamada, K, Kuroki, Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genom 8: pp. 124
    48. Oshiumi, H, Tsujita, T, Shida, K, Matsumoto, M, Ikeo, K, Seya, T (2003) Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 54: pp. 791-800
    49. Jault, C, Pichon, L, Chluba, J (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 40: pp. 759-771
    50. Takano, T, Hwang, SD, Kondo, H, Hirono, I, Aoki, T, Sano, M (2010) Evidence of molecular toll-like receptor mechanisms in teleosts. Fish Pathol 45: pp. 1-16
    51. Strandskog, G, Skjaeveland, I, Ellingsen, T, J酶rgensen, JB (2008) Double-stranded RNA- and CpG DNA-induced immune responses in Atlantic salmon: comparison and synergies. Vaccine 26: pp. 4704-4715
    52. Matsuo, A, Oshiumi, H, Tsujita, T, Mitani, H, Kasai, H, Yoshimizu, M, Matsumoto, M, Seya, T (2008) Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses. J Immunol 181: pp. 3474-3485
    53. Diebold, SS, Kaisho, T, Hemmi, H, Akira, S, Reis e Sousa, C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: pp. 1529-1531
    54. Heil, F, Hemmi, H, Hochrein, H, Ampenberger, F, Kirschning, C, Akira, S, Lipford, G, Wagner, H, Bauer, S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: pp. 1526-1529
    55. Hemmi, H, Takeuchi, O, Sato, S, Yamamoto, M, Kaisho, T, Sanjo, H, Kawai, T, Hoshino, K, Takeda, K, Akira, S (2004) The roles of two I魏B kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 199: pp. 1641-1650
    56. Purcell, MK, Smith, KD, Hood, L, Winton, JR, Roach, JC (2006) Conservation of Toll-like receptor signaling pathways in teleost fish. Comp Biochem Physiol Part D Genomics Proteomics 1: pp. 77-88
    57. Kileng, 脴, Albuquerque, A, Robertsen, B (2008) Induction of interferon system genes in Atlantic salmon by the imidazoquinoline S-27609, a ligand for Toll-like receptor 7. Fish Shellfish Immunol 24: pp. 514-522
    58. Sun, B, Robertsen, B, Wang, Z, Liu, B (2009) Identification of an Atlantic salmon IFN multigene cluster encoding three IFN subtypes with very different expression properties. Dev Comp Immunol 33: pp. 547-558
    59. Takano, T, Kondo, H, Hirono, I, Endo, M, Saito-Taki, T, Aoki, T (2007) Molecular cloning and characterization of Toll-like receptor 9 in Japanese flounder, Paralichthys olivaceus. Mol Immunol 44: pp. 1845-1853
    60. Zhou, ZX, Zhang, J, Sun, L (2014) C7: a CpG oligodeoxynucleotide that induces protective immune response against megalocytivirus in Japanese flounder (Paralichthys olivaceus) via Toll-like receptor 9-mediated signaling pathway. Dev Comp Immunol 44: pp. 124-132
    61. J酶rgensen, JB, Johansen, LH, Steiro, K, Johansen, A (2003) CpG DNA induces protective antiviral immune responses in Atlantic salmon (Salmo salar L.). J Virol 77: pp. 11471-11479
    62. Pedersen, GM, Johansen, A, Olsen, RL, J酶rgensen, JB (2006) Stimulation of type I IFN activity in Atlantic salmon (Salmo salar L.) leukocytes: synergistic effects of cationic proteins and CpG ODN. Fish Shellfish Immunol 20: pp. 503-518
    63. Roach, JC, Glusman, G, Rowen, L, Kaur, A, Purcell, MK, Smith, KD, Hood, LE, Aderem, A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102: pp. 9577-9582
    64. Brownlie, R, Zhu, J, Allan, B, Mutwiri, GK, Babiuk, LA, Potter, A, Griebel, P (2009) Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol 46: pp. 3163-3170
    65. Aoki, T, Hikima, J, Hwang, SD, Jung, TS (2013) Innate immunity of finfish: primordial conservation and function of viral RNA sensors in teleosts. Fish Shellfish Immunol 35: pp. 1689-1702
    66. Yeh, DW, Liu, YL, Lo, YC, Yuh, CH, Yu, GY, Lo, JF, Luo, Y, Xiang, R, Chuang, TH (2013) Toll-like receptor 9 and 21 have different ligand recognition profiles and cooperatively mediate activity of CpG-oligodeoxynucleotides in zebrafish. Proc Natl Acad Sci USA 110: pp. 20711-20716
    67. Zhang, YB, Gui, JF (2012) Molecular regulation of interferon antiviral response in fish. Dev Comp Immunol 38: pp. 193-202
    68. Zou, J, Chang, M, Nie, P, Secombes, CJ (2009) Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol 9: pp. 85
    69. Ohtani, M, Hikima, J, Kondo, H, Hirono, I, Jung, TS, Aoki, T (2010) Evolutional conservation of molecular structure and antiviral function of a viral RNA receptor, LGP2, in Japanese flounder, Paralichthys olivaceus. J Immunol 185: pp. 7507-7517
    70. Ohtani, M, Hikima, J, Kondo, H, Hirono, I, Jung, TS, Aoki, T (2011) Characterization and antiviral function of a cytosolic sensor gene, MDA5, in Japanese flounder, Paralichthys olivaceus. Dev Comp Immunol 35: pp. 554-562
    71. Rajendran, KV, Zhang, J, Liu, S, Peatman, E, Kucuktas, H, Wang, X, Liu, H, Wood, T, Terhune, J, Liu, Z (2012) Pathogen recognition receptors in channel catfish: II. Identification, phylogeny and expression of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Dev Comp Immunol 37: pp. 381-389
    72. Yang, C, Su, J, Huang, T, Zhang, R, Peng, L (2011) Identification of a retinoic acid-inducible gene I from grass carp (Ctenopharyngodon idella) and expression analysis in vivo and in vitro. Fish Shellfish Immunol 30: pp. 936-943
    73. Feng, H, Liu, H, Kong, R, Wang, L, Wang, Y, Hu, W, Guo, Q (2011) Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway. Fish Shellfish Immunol 30: pp. 1159-1169
    74. Skjesol, A, Skj忙veland, I, Eln忙s, M, Timmerhaus, G, Fredriksen, BN, J酶rgensen, SM, Krasnov, A, J酶rgensen, JB (2011) IPNV with high and low virulence: host immune responses and viral mutations during infection. Virol J 8: pp. 396
    75. Su, J, Huang, T, Dong, J, Heng, J, Zhang, R, Peng, L (2010) Molecular cloning and immune responsive expression of MDA5 gene, a pivotal member of the RLR gene family from grass carp Ctenopharyngodon idella. Fish Shellfish Immunol 28: pp. 712-718
    76. Huang, T, Su, J, Heng, J, Dong, J, Zhang, R, Zhu, H (2010) Identification and expression profiling analysis of grass carp Ctenopharyngodon idella LGP2 cDNA. Fish Shellfish Immunol 29: pp. 349-355
    77. Jensen, I, Seppola, M, Steiro, K, Sandaker, E, Mennen, S, Sommer, AI (2009) Susceptibility of Atlantic cod Gadus morhua juveniles to different routes of experimental challenge with infectious pancreatic necrosis virus (IPNV). Dis Aquat Organ 85: pp. 105-113
    78. Rise, ML, Hall, J, Rise, M, Hori, T, Gamperl, A, Kimball, J, Hubert, S, Bowman, S, Johnson, SC (2008) Functional genomic analysis of the response of Atlantic cod (Gadus morhua) spleen to the viral mimic polyriboinosinic polyribocytidylic acid (pIC). Dev Comp Immunol 32: pp. 916-931
    79. Rise, ML, Hall, JR, Rise, M, Hori, TS, Browne, MJ, Gamperl, AK, Hubert, S, Kimball, J, Bowman, S, Johnson, SC (2010) Impact of asymptomatic nodavirus carrier state and intraperitoneal viral mimic injection on brain transcript expression in Atlantic cod (Gadus morhua). Physiol Genomics 42: pp. 266-280
    80. Hornung, V, Ellegast, J, Kim, S, Brz贸zka, K, Jung, A, Kato, H, Poeck, H, Akira, S, Conzelmann, KK, Schlee, M, Endres, S, Hartmann, G (2006) 5鈥?Triphosphate RNA is the ligand for RIG-I. Science 314: pp. 994-997
    81. Pichlmair, A, Schulz, O, Tan, CP, N盲slund, TI, Liljestr枚m, P, Weber, F, Reis e Sousa, C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5鈥?phosphates. Science 314: pp. 997-1001
    82. Kato, H, Takeuchi, O, Mikamo-Satoh, E, Hirai, R, Kawai, T, Matsushita, K, Hiiragi, A, Dermody, TS, Fujita, T, Akira, S (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205: pp. 1601-1610
    83. Yoneyama, M, Kikuchi, M, Natsukawa, T, Shinobu, N, Imaizumi, T, Miyagishi, M, Taira, K, Akira, S, Fujita, T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5: pp. 730-737
    84. Kato, H, Takeuchi, O, Sato, S, Yoneyama, M, Yamamoto, M, Matsui, K, Uematsu, S, Jung, A, Kawai, T, Ishii, KJ, Yamaguchi, O, Otsu, K, Tsujimura, T, Koh, CS, Reis e Sousa, C, Matsuura, Y, Fujita, T, Akira, S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: pp. 101-105
    85. Li, X, Ranjith-Kumar, CT, Brooks, MT, Dharmaiah, S, Herr, AB, Kao, C, Li, P (2009) The RIG-I-like receptor LGP2 recognizes the termini of double-stranded RNA. J Biol Chem 284: pp. 13881-13891
    86. Chen, L, Su, J, Yang, C, Peng, L, Wan, Q, Wang, L (2012) Functional characterizations of RIG-I to GCRV and viral/bacterial PAMPs in grass carp Ctenopharyngodon idella. PLoS ONE 7: pp. e42182
    87. Sun, F, Zhang, YB, Jiang, J, Wang, B, Chen, C, Zhang, J, Gui, JF (2014) Gig1, a novel antiviral effector involved in fish interferon response. Virology 448: pp. 322-332
    88. Li, S, Sun, F, Zhang, YB, Gui, JF, Zhang, QY (2012) Identification of DreI as an antiviral factor regulated by RLR signaling pathway. PLoS ONE 7: pp. e32427
    89. Sullivan, C, Postlethwait, JH, Lage, CR, Millard, PJ, Kim, CH (2007) Evidence for evolving Toll-IL-1 receptor-containing adaptor molecule function in vertebrates. J Immunol 178: pp. 4517-4527
    90. Fan, S, Chen, S, Liu, Y, Lin, Y, Liu, H, Guo, L, Lin, B, Huang, S, Xu, A (2008) Zebrafish TRIF, a Golgi-localized protein, participates in IFN induction and NF-魏B activation. J Immunol 180: pp. 5373-5383
    91. Kawai, T, Akira, S (2007) TLR signaling. Semin Immunol 19: pp. 24-32
    92. Ishii, KJ, Kawagoe, T, Koyama, S, Matsui, K, Kumar, H, Kawai, T, Uematsu, S, Takeuchi, O, Takeshita, F, Coban, C, Akira, S (2008) TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451: pp. 725-729
    93. Fullam, A, Schr枚der, M (2013) DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochim Biophys Acta 1829: pp. 854-865
    94. Keating, SE, Baran, M, Bowie, AG (2011) Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol 32: pp. 574-581
    95. Takeuchi, O, Akira, S (2010) Pattern recognition receptors and inflammation. Cell 140: pp. 805-820
    96. Thompson, AJV, Locarnini, SA (2007) Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol Cell Biol 85: pp. 435-445
    97. Fitzgerald, KA, McWhirter, SM, Faia, KL, Rowe, DC, Latz, E, Golenbock, DT, Coyle, AJ, Liao, SM, Maniatis, T (2003) IKK蔚 and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: pp. 491-496
    98. Sharma, S, tenOever, BR, Grandvaux, N, Zhou, GP, Lin, R, Hiscott, J (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300: pp. 1148-1151
    99. Pomerantz, JL, Baltimore, D (1999) NF-魏B activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 18: pp. 6694-6704
    100. McWhirter, SM, Fitzgerald, KA, Rosains, J, Rowe, DC, Golenbock, DT, Maniatis, T (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 101: pp. 233-238
    101. Mori, M, Yoneyama, M, Ito, T, Takahashi, K, Inagaki, F, Fujita, T (2004) Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. J Biol Chem 279: pp. 9698-9702
    102. Caillaud, A, Hovanessian, AG, Levy, DE, Mari茅, IJ (2005) Regulatory serine residues mediate phosphorylation-dependent and phosphorylation-independent activation of interferon regulatory factor 7. J Biol Chem 280: pp. 17671-17677
    103. Lin, R, Heylbroeck, C, Pitha, PM, Hiscott, J (1998) Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18: pp. 2986-2996
    104. Sato, M, Suemori, H, Hata, N, Asagiri, M, Ogasawara, K, Nakao, K, Nakaya, T, Katsuki, M, Noguchi, S, Tanaka, N, Taniguchi, T (2000) Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-伪/尾 gene induction. Immunity 13: pp. 539-548
    105. Shen, RR, Hahn, WC (2011) Emerging roles for the non-canonical IKKs in cancer. Oncogene 30: pp. 631-641
    106. Shimada, T, Kawai, T, Takeda, K, Matsumoto, M, Inoue, J, Tatsumi, Y, Kanamaru, A, Akira, S (1999) IKK-i, a novel lipopolysaccharide-inducible kinase that is related to I魏B kinases. Int Immunol 11: pp. 1357-1362
    107. Honda, K, Yanai, H, Negishi, H, Asagiri, M, Sato, M, Mizutani, T, Shimada, N, Ohba, Y, Takaoka, A, Yoshida, N, Taniguchi, T (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434: pp. 772-777
    108. Gravel, SP, Servant, MJ (2005) Roles of an I魏B kinase-related pathway in human cytomegalovirus-infected vascular smooth muscle cells: a molecular link in pathogen-induced proatherosclerotic conditions. J Biol Chem 280: pp. 7477-7486
    109. Bibeau-Poirier, A, Gravel, SP, Cl茅ment, JF, Rolland, S, Rodier, G, Coulombe, P, Hiscott, J, Grandvaux, N, Meloche, S, Servant, MJ (2006) Involvement of the I魏B kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation. J Immunol 177: pp. 5059-5067
    110. Chi, H, Zhang, Z, B酶gwald, J, Zhan, W, Dalmo, RA (2011) Cloning, expression analysis and promoter structure of TBK1 (TANK-binding kinase 1) in Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol 30: pp. 1055-1063
    111. Sun, F, Zhang, YB, Liu, TK, Shi, J, Wang, B, Gui, JF (2011) Fish MITA serves as a mediator for distinct fish IFN gene activation dependent on IRF3 or IRF7. J Immunol 187: pp. 2531e9
    112. Biacchesi, S, M茅rour, E, Lamoureux, A, Bernard, J, Br茅mont, M (2012) Both STING and MAVS fish orthologs contribute to the induction of interferon mediated by RIG-I. PLoS One 7: pp. e47737
    113. Ratsimandresy, RA, Dorfleutner, A, Stehlik, C (2013) An update on PYRIN domain-containing pattern recognition receptors: from immunity to pathology. Front Immunol 4: pp. 440
    114. Schr枚der, M, Baran, M, Bowie, AG (2008) Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. EMBO J 27: pp. 2147-2157
    115. Zhang, Z, Yuan, B, Bao, M, Lu, N, Kim, T, Liu, YJ (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12: pp. 959-965
    116. Parvatiyar, K, Zhang, Z, Teles, RM, Ouyang, S, Jiang, Y, Iyer, SS, Zaver, SA, Schenk, M, Zeng, S, Zhong, W, Liu, ZJ, Modlin, RL, Liu, YJ, Cheng, G (2012) The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 13: pp. 1155-1161
    117. Zhang, Z, Bao, M, Lu, N, Weng, L, Yuan, B, Liu, YJ (2013) The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat Immunol 14: pp. 172-178
    118. Sommerset, I, Skern, R, Biering, E, Bleie, H, Fiksdal, IU, Grove, S, Nerland, AH (2005) Protection against Atlantic halibut nodavirus in turbot is induced by recombinant capsid protein vaccination but not following DNA vaccination. Fish Shellfish Immunol 18: pp. 13-29
    119. Mikalsen, AB, Torgersen, J, Alestr枚m, P, Hellemann, AL, Koppang, EO, Rimstad, E (2004) Protection of Atlantic salmon Salmo salar against infectious pancreatic necrosis after DNA vaccination. Dis Aquat Organ 60: pp. 11-20
    120. Mikalsen, AB, Sindre, H, Torgersen, J, Rimstad, E (2005) Protective effects of a DNA vaccine expressing the infectious salmon anemia virus hemagglutinin-esterase in Atlantic salmon. Vaccine 23: pp. 4895-4905
    121. Emmenegger, EJ, Kurath, G (2008) DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus. Vaccine 26: pp. 6415-6421
    122. Boudinot, P, Blanco, M, Kinkelin, P, Benmansour, A (1998) Combined DNA immunization with the glycoprotein gene of viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus induces double-specific protective immunity and nonspecific response in rainbow trout. Virology 249: pp. 297-306
    123. Einer-Jensen, K, Delgado, L, Lorenzen, E, Bovo, G, Evensen, 脴, Lapatra, S, Lorenzen, N (2009) Dual DNA vaccination of rainbow trout (Oncorhynchus mykiss) against two different rhabdoviruses, VHSV and IHNV, induces specific divalent protection. Vaccine 27: pp. 1248-1253
    124. Nusbaum, KE, Smith, BF, DeInnocentes, P, Bird, RC (2002) Protective immunity induced by DNA vaccination of channel catfish with early and late transcripts of the channel catfish herpesvirus (IHV-1). Vet Immunol Immunopathol 84: pp. 151-168
    125. Tian, J, Yu, J (2011) Poly (lactic-co-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish Shellfish Immunol 30: pp. 109-117
    126. Zhou, JX, Wang, H, Li, XW, Zhu, X, Lu, WL, Zhang, DM (2014) Construction of KHV-CJ ORF25 DNA vaccine and immune challenge test. J Fish Dis 37: pp. 319-325
    127. Vazquez-Juarez, RC, Gomez-Chiarri, M, Barrera-Salda帽a, H, Hernandez-Saavedra, N, Dumas, S, Ascencio, F (2005) Evaluation of DNA vaccination of spotted sand bass (Paralabrax maculatofasciatus) with two major outer-membrane protein-encoding genes from Aeromonas veronii. Fish Shellfish Immunol 19: pp. 153-163
    128. Plant, KP, LaPatra, SE, Cain, KD (2009) Vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), with recombinant and DNA vaccines produced to Flavobacterium psychrophilum heat shock proteins 60 and 70. J Fish Dis 32: pp. 521-534
    129. Huang, LY, Wang, KY, Xiao, D, Chen, DF, Geng, Y, Wang, J, He, Y, Wang, EL, Huang, JL, Xiao, GY (2014) Safety and immunogenicity of an oral DNA vaccine encoding Sip of Streptococcus agalactiae from Nile tilapia Oreochromis niloticus delivered by live attenuated Salmonella typhimurium. Fish Shellfish Immunol 38: pp. 34-41
    130. Sun, Y, Hu, YH, Liu, CS, Sun, L (2010) Construction and analysis of an experimental Streptococcus iniae DNA vaccine. Vaccine 28: pp. 3905-3912
    131. Cai, SH, Lu, YS, Jian, JC, Wang, B, Huang, YC, Tang, JF, Ding, Y, Wu, ZH (2013) Protection against Vibrio alginolyticus in crimson snapper Lutjanus erythropterus immunized with a DNA vaccine containing the ompW gene. Dis Aquat Organ 106: pp. 39-47
    132. Kumar, SR, Parameswaran, V, Ahmed, VP, Musthaq, SS, Hameed, AS (2007) Protective efficiency of DNA vaccination in Asian seabass (Lates calcarifer) against Vibrio anguillarum. Fish Shellfish Immunol 23: pp. 316-326
    133. Hu, YH, Sun, L (2011) A bivalent Vibrio harveyi DNA vaccine induces strong protection in Japanese flounder (Paralichthys olivaceus). Vaccine 29: pp. 4328-4333
    134. Sun, Y, Zhang, M, Liu, CS, Qiu, R, Sun, L (2012) A divalent DNA vaccine based on Sia10 and OmpU induces cross protection against Streptococcus iniae and Vibrio anguillarum in Japanese flounder. Fish Shellfish Immunol 32: pp. 1216-1222
    135. Hwang, SD, Ohtani, M, Hikima, J, Jung, TS, Kondo, H, Hirono, I, Aoki, T (2012) Molecular cloning and characterization of Toll-like receptor 3 in Japanese flounder, Paralichthys olivaceus. Dev Comp Immunol 37: pp. 87-96
    136. Su, J, Zhu, Z, Wang, Y, Zou, J, Hu, W (2008) Toll-like receptor 3 regulates Mx expression in rare minnow Gobiocypris rarus after viral infection. Immunogenetics 60: pp. 195-205
    137. Lee, PT, Zou, J, Holland, JW, Martin, SA, Kanellos, T, Secombes, CJ (2013) Identification and characterization of TLR7, TLR8a2, TLR8b1 and TLR8b2 genes in Atlantic salmon (Salmo salar). Dev Comp Immunol 41: pp. 295-305
    138. Svingerud, T, Solstad, T, Sun, B, Nyrud, ML, Kileng, 脴, Greiner-Tollersrud, L, Robertsen, B (2012) Atlantic salmon type I IFN subtypes show differences in antiviral activity and cell-dependent expression: evidence for high IFNb/IFNc-producing cells in fish lymphoid tissues. J Immunol 189: pp. 5912-5923
    139. Palti, Y, Gahr, SA, Purcell, MK, Hadidi, S, Rexroad, CE, Wiens, GD (2010) Identification, characterization and genetic mapping of TLR7, TLR8a1 and TLR8a2 genes in rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 34: pp. 219-233
    140. Skjaeveland, I, Iliev, DB, Zou, J, J酶rgensen, T, J酶rgensen, JB (2008) A TLR9 homolog that is up-regulated by IFN-纬 in Atlantic salmon (Salmo salar). Dev Comp Immunol 32: pp. 603-607
    141. Iliev, DB, Skj忙veland, I, J酶rgensen, JB (2013) CpG oligonucleotides bind TLR9 and RRM-containing proteins in Atlantic salmon (Salmo salar). BMC Immunol 14: pp. 12
    142. Biacchesi, S, LeBerre, M, Lamoureux, A, Louise, Y, Lauret, E, Boudinot, P, Br茅mont, M (2009) Mitochondrial antiviral signaling protein plays a major role in induction of the fish innate immune response against RNA and DNA viruses. J Virol 83: pp. 7815-7827
    143. Zou, PF, Chang, MX, Xue, NN, Liu, XQ, Li, JH, Fu, JP, Chen, SN, Nie, P (2014) Melanoma differentiation-associated gene 5 in zebrafish provoking higher interferon-promoter activity through signalling enhancing of its shorter splicing variant. Immunology 141: pp. 192-202
    144. Hikima, J, Yi, MK, Ohtani, M, Jung, CY, Kim, YK, Mun, JY, Kim, YR, Takeyama, H, Aoki, T, Jung, TS (2012) LGP2 expression is enhanced by interferon regulatory factor 3 in olive flounder Paralichthys olivaceus. PLoS One 7: pp. e51522
    145. Chang, M, Collet, B, Nie, P, Lester, K, Campbell, S, Secombes, CJ, Zou, J (2011) Expression and functional characterization of the RIG-I-like receptors MDA5 and LGP2 in rainbow trout (Oncorhynchus mykiss). J Virol 85: pp. 8403-8412
  • 刊物主题:Fish & Wildlife Biology & Management; Freshwater & Marine Ecology; Food Science;
  • 出版者:Springer Japan
  • ISSN:1444-2906
文摘
Aquacultured fish are threatened by many pathogens, often with serious consequences. Vaccination is one of the most effective tools for enhancing host immunity and protecting fish from infections. Vaccination with DNA vaccine is based on the administration of the gene encoding a vaccine antigen. Several effective DNA vaccines that encode viral or bacterial antigenic proteins have already been shown to be effective for cultured fish. This review summarizes current knowledge on fish DNA vaccines, and the mechanism of interaction between the DNA vaccines and host immunity, especially focusing on the enhancement of innate immunity mediated through direct-recognition of DNA vaccine by pattern recognition receptors (PRRs). To date, numerous fish PRR genes have been identified, and the primordial functions of PRRs involved in the innate immune response to viral and bacterial nucleic acids have been increasingly clarified. The evolutionary conservations and divergences in the PRR mechanisms of teleosts and mammals are focused on their molecular features and the recognition of DNA vaccine mediated by TANK binding kinase 1. In addition, the mechanism of type I interferon production in teleosts, which is enhanced after the recognition of cytosolic nucleic acids and current topics on DNA sensing by PRRs are also introduced.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700