Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus
详细信息    查看全文
  • 作者:Sarah Hammer (1) (2)
    Gabriela L Carrillo (1) (3)
    Gubbi Govindaiah (6)
    Aboozar Monavarfeshani (1) (4)
    Joseph S Bircher (1) (5)
    Jianmin Su (1)
    William Guido (6)
    Michael A Fox (1) (4) (5)

    1. Virginia Tech Carilion Research Institute
    ; 2 Riverside Circle ; Roanoke ; VA ; 24016 ; USA
    2. Roanoke Valley Governor School
    ; 2104 Grandin Road SW ; Roanoke ; VA ; 24015 ; USA
    3. Department of Psychology
    ; Virginia Tech ; 109 Williams Hall ; Blacksburg ; VA ; 24061 ; USA
    6. Department of Anatomical Sciences and Neurobiology
    ; University of Louisville ; 511 South Floyd ; Louisville ; KY ; 40202 ; USA
    4. Department of Biological Sciences
    ; Virginia Tech ; 2125 Derring Hall ; Blacksburg ; VA ; 24061 ; USA
    5. Virginia Tech Carilion School of Medicine
    ; 2 Riverside Circle ; Roanoke ; VA ; 24016 ; USA
  • 关键词:Retina ; Thalamus ; Retinogeniculate ; Lateral geniculate nucleus ; Axon ; Retinal terminal ; Nerve terminal
  • 刊名:Neural Development
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:12,350 KB
  • 参考文献:1. Sherman, SM, Guillery, RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 357: pp. 1695-1708 CrossRef
    2. Sherman, SM (2004) Interneurons and triadic circuitry of the thalamus. Trends Neurosci 27: pp. 670-675 CrossRef
    3. Erisir, A, Van Horn, SC, Bickford, ME, Sherman, SM (1997) Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. J Comp Neurol 377: pp. 535-549 CrossRef
    4. Erisir, A, Van Horn, SC, Sherman, SM (1997) Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc Natl Acad Sci U S A 94: pp. 1517-1520 CrossRef
    5. Van Horn, SC, Erisir, A, Sherman, SM (2000) Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J Comp Neurol 416: pp. 509-520 CrossRef
    6. Bickford, ME, Slusarczyk, A, Dilger, EK, Krahe, TE, Kucuk, C, Guido, W (2010) Synaptic development of the mouse dorsal lateral geniculate nucleus. J Comp Neurol 518: pp. 622-635 CrossRef
    7. Fitzpatrick, D, Penny, GR, Schmechel, DE (1984) Glutamic acid decarboxylase-immunoreactive neurons and terminals in the lateral geniculate nucleus of the cat. J Neurosci 4: pp. 1809-1829
    8. Montero, VM, Singer, W (1985) Ultrastructural identification of somata and neural processes immunoreactive to antibodies against glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the cat. Exp Brain Res 59: pp. 151-165 CrossRef
    9. Gabbott, PL, Somogyi, J, Stewart, MG, Hamori, J (1986) GABA-immunoreactive neurons in the dorsal lateral geniculate nucleus of the rat: characterization by combined Golgi-impregnation and immunocytochemistry. Exp Brain Res 61: pp. 311-322
    10. Moore, RY, Speh, JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150: pp. 112-116 CrossRef
    11. Fremeau, RT, Troyer, MD, Pahner, I, Nygaard, GO, Tran, CH, Reimer, RJ, Bellocchio, EE, Fortin, D, Storm-Mathisen, J, Edwards, RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31: pp. 247-260 CrossRef
    12. Land, PW, Kyonka, E, Shamalla-Hannah, L (2004) Vesicular glutamate transporters in the lateral geniculate nucleus: expression of VGLUT2 by retinal terminals. Brain Res 996: pp. 251-254 CrossRef
    13. Guillery, RW (1969) The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch Mikrosk Anat 96: pp. 1-38 CrossRef
    14. Lund, RD, Cunningham, TJ (1972) Aspects of synaptic and laminar organization of the mammalian lateral geniculate body. Invest Ophthalmol 11: pp. 291-302
    15. Robson, JA, Mason, CA (1979) The synaptic organization of terminals traced from individual labeled retino-geniculate axons in the cat. Neuroscience 4: pp. 99-111 CrossRef
    16. Hamos, JE, Van Horn, SC, Raczkowski, D, Sherman, SM (1987) Synaptic circuits involving an individual retinogeniculate axon in the cat. J Comp Neurol 259: pp. 165-192 CrossRef
    17. Famiglietti, EV (1970) Dendro-dendritic synapses in the lateral geniculate nucleus of the cat. Brain Res 20: pp. 181-191 CrossRef
    18. Montero, VM, Scott, GL (1981) Synaptic terminals in the dorsal lateral geniculate nucleus from neurons of the thalamic reticular nucleus: a light and electron microscope autoradiographic study. Neuroscience 6: pp. 2561-2577 CrossRef
    19. Seabrook, TA, Krahe, TE, Govindaiah, G, Guido, W (2013) Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development. Neural Dev 8: pp. 24 CrossRef
    20. Rafols, JA, Valverde, F (1973) The structure of the dorsal lateral geniculate nucleus in the mouse. A Golgi and electron microscopic study. J Comp Neurol 150: pp. 303-332 CrossRef
    21. Niimi, K, Kanaseki, T, Takimoto, T (1963) The comparative anatomy of the ventral nucleus of the lateral geniculate body in mammals. J Comp Neurol 121: pp. 313-323 CrossRef
    22. Harrington, ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 21: pp. 705-727 CrossRef
    23. Fox, MA, Guido, W (2011) Shedding light on class-specific wiring: development of intrinsically photosensitive retinal ganglion cell circuitry. Mol Neurobiol 44: pp. 321-329 CrossRef
    24. Cosenza, RM, Moore, RY (1984) Afferent connections of the ventral lateral geniculate nucleus in the rat: an HRP study. Brain Res 310: pp. 367-370 CrossRef
    25. Hattar, S, Kumar, M, Park, A, Tong, P, Tung, J, Yau, KW, Berson, DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497: pp. 326-349 CrossRef
    26. Huberman, AD, Manu, M, Koch, SM, Susman, MW, Lutz, AB, Ullian, EM, Baccus, SA, Barres, BA (2008) Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59: pp. 425-438 CrossRef
    27. Huberman, AD, Wei, W, Elstrott, J, Stafford, BK, Feller, MB, Barres, BA (2009) Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62: pp. 327-334 CrossRef
    28. Kim, IJ, Zhang, Y, Yamagata, M, Meister, M, Sanes, JR (2008) Molecular identification of a retinal cell type that responds to upward motion. Nature 452: pp. 478-482 CrossRef
    29. Kim, IJ, Zhang, Y, Meister, M, Sanes, JR (2010) Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. J Neurosci 30: pp. 1452-1462 CrossRef
    30. Kay, JN, De la Huerta, I, Kim, IJ, Zhang, Y, Yamagata, M, Chu, MW, Meister, M, Sanes, JR (2011) Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J Neurosci 31: pp. 7753-7762 CrossRef
    31. Ecker, JL, Dumitrescu, ON, Wong, KY, Alam, NM, Chen, SK, LeGates, T, Renna, JM, Prusky, GT, Berson, DM, Hattar, S (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67: pp. 49-60 CrossRef
    32. Osterhout, JA, Josten, N, Yamada, J, Pan, F, Wu, SW, Nguyen, PL, Panagiotakos, G, Inoue, YU, Egusa, SF, Volgyi, B, Inoue, T, Bloomfield, SA, Barres, BA, Berson, DM, Feldheim, DA, Huberman, AD (2011) Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. Neuron 71: pp. 632-639 CrossRef
    33. Triplett, JW, Wei, W, Gonzalez, C, Sweeney, NT, Huberman, AD, Feller, MB, Feldheim, DA (2014) Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits. Neural Dev 9: pp. 2 CrossRef
    34. Sweeney, NT, Tierney, H, Feldheim, DA (2014) Tbr2 is required to generate a neural circuit mediating the pupillary light reflex. J Neurosci 34: pp. 5447-5453 CrossRef
    35. Jacobs, EC, Campagnoni, C, Kampf, K, Reyes, SD, Kalra, V, Handley, V, Xie, YY, Hong-Hu, Y, Spreur, V, Fisher, RS, Campagnoni, AT (2007) Visualization of corticofugal projections during early cortical development in a tau-GFP-transgenic mouse. Eur J Neurosci 25: pp. 17-30 CrossRef
    36. Seabrook, T, El Danaf, R, Krahe, TE, Fox, MA, Guido, W (2013) Retinal input regulates the timing of corticogeniculate innervation. J Neurosci 33: pp. 10085-10097 CrossRef
    37. Su, J, Haner, CV, Imbery, TE, Brooks, JM, Morhardt, DR, Gorse, K, Guido, W, Fox, MA (2011) Reelin is required for class-specific retinogeniculate targeting. J Neurosci 31: pp. 575-586 CrossRef
    38. Fukuda, T, Aika, Y, Heizmann, CW, Kosaka, T (1998) GABAergic axon terminals at perisomatic and dendritic inhibitory sites show different immunoreactivities against two GAD isoforms, GAD67 and GAD65, in the mouse hippocampus: a digitized quantitative analysis. J Comp Neurol 395: pp. 177-194 CrossRef
    39. Hardwick, C, French, SJ, Southam, E, Totterdell, S (2005) A comparison of possible markers for chandelier cartridges in rat medial prefrontal cortex and hippocampus. Brain Res 1031: pp. 238-244 CrossRef
    40. Fish, KN, Sweet, RA, Lewis, DA (2011) Differential distribution of proteins regulating GABA synthesis and reuptake in axon boutons of subpopulations of cortical interneurons. Cereb Cortex 21: pp. 2450-2460 CrossRef
    41. de Lima, AD, Montero, VM, Singer, W (1985) The cholinergic innervation of the visual thalamus: an EM immunocytochemical study. Exp Brain Res 59: pp. 206-212 CrossRef
    42. Grant, E, Hoerder-Suabedissen, A, Molnar, Z (2012) Development of the corticothalamic projections. Front Neurosci 6: pp. 53 CrossRef
    43. Bourassa, J, Deschenes, M (1995) Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience 66: pp. 253-263 CrossRef
    44. Wang, SW, Kim, BS, Ding, K, Wang, H, Sun, D, Johnson, RL, Klein, WH, Gan, L (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15: pp. 24-29 CrossRef
    45. Brooks, JM, Su, J, Levy, C, Wang, JS, Seabrook, TA, Guido, W, Fox, MA (2013) A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Rep 5: pp. 573-581 CrossRef
    46. Sherman, SM, Guillery, RW (1998) On the actions that one nerve cell can have on another: distinguishing 鈥渄rivers鈥?from 鈥渕odulators鈥? Proc Natl Acad Sci U S A 95: pp. 7121-7126 CrossRef
    47. Petrof, I, Sherman, SM (2013) Functional significance of synaptic terminal size in glutamatergic sensory pathways in thalamus and cortex. J Physiol 591: pp. 3125-3131 CrossRef
    48. Su, J, Klemm, MA, Josephson, AM, Fox, MA (2013) Contributions of VLDLR and LRP8 in the establishment of retinogeniculate projections. Neural Dev 8: pp. 11 CrossRef
    49. Jaubert-Miazza, L, Green, E, Lo, FS, Bui, K, Mills, J, Guido, W (2005) Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci 22: pp. 661-676 CrossRef
    50. Reese, BE (1988) 鈥楬idden lamination鈥?in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat. Brain Res 472: pp. 119-137 CrossRef
    51. Erzurumlu, RS, Jhaveri, S, Schneider, GE (1988) Distribution of morphologically different retinal axon terminals in the hamster dorsal lateral geniculate nucleus. Brain Res 461: pp. 175-181 CrossRef
    52. Dhande, OS, Huberman, AD (2014) Retinal ganglion cell maps in the brain: implications for visual processing. Curr Opin Neurobiol 24: pp. 133-142 CrossRef
    53. Rivlin-Etzion, M, Zhou, K, Wei, W, Elstrott, J, Nguyen, PL, Barres, BA, Huberman, AD, Feller, MB (2011) Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J Neurosci 31: pp. 8760-8769 CrossRef
    54. Hong, YK, Kim, IJ, Sanes, JR (2011) Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J Comp Neurol 519: pp. 1691-1711 CrossRef
    55. Mize, RR, Horner, LH (1984) Retinal synapses of the cat medial interlaminar nucleus and ventral lateral geniculate nucleus differ in size and synaptic organization. J Comp Neurol 224: pp. 579-590 CrossRef
    56. Dhande, OS, Hua, EW, Guh, E, Yeh, J, Bhatt, S, Zhang, Y, Ruthazer, ES, Feller, MB, Crair, MC (2011) Development of single retinofugal axon arbors in normal and beta2 knock-out mice. J Neurosci 31: pp. 3384-3399 CrossRef
    57. Chen, C, Regehr, WG (2000) Developmental remodeling of the retinogeniculate synapse. Neuron 28: pp. 955-966 CrossRef
    58. Stelzner, DJ, Baisden, RH, Goodman, DC (1976) The ventral lateral geniculate nucleus, pars lateralis of the rat. Synaptic organization and conditions for axonal sprouting. Cell Tissue Res 170: pp. 435-454 CrossRef
    59. Singh, R, Su, J, Brooks, J, Terauchi, A, Umemori, H, Fox, MA (2012) Fibroblast growth factor 22 contributes to the development of retinal nerve terminals in the dorsal lateral geniculate nucleus. Front Mol Neurosci 4: pp. 61 CrossRef
    60. Guido, W (2008) Refinement of the retinogeniculate pathway. J Physiol 586: pp. 4357-4362 CrossRef
    61. Hong, YK, Chen, C (2011) Wiring and rewiring of the retinogeniculate synapse. Curr Opin Neurobiol 21: pp. 228-237 CrossRef
    62. Frost, DO (1982) Anomalous visual connections to somatosensory and auditory systems following brain lesions in early life. Brain Res 255: pp. 627-635 CrossRef
    63. Frost, DO (1986) Development of anomalous retinal projections to nonvisual thalamic nuclei in Syrian hamsters: a quantitative study. J Comp Neurol 252: pp. 95-105 CrossRef
    64. Campbell, G, Frost, DO (1987) Target-controlled differentiation of axon terminals and synaptic organization. Proc Natl Acad Sci U S A 84: pp. 6929-6933 CrossRef
    65. Campbell, G, Frost, DO (1988) Synaptic organization of anomalous retinal projections to the somatosensory and auditory thalamus: target-controlled morphogenesis of axon terminals and synaptic glomeruli. J Comp Neurol 272: pp. 383-408 CrossRef
    66. Yang, Z, Ding, K, Pan, L, Deng, M, Gan, L (2003) Math5 determines the competence state of retinal ganglion cell progenitors. Dev Biol 264: pp. 240-254 CrossRef
    67. Varea, E, Nacher, J, Blasco-Ibanez, JM, Gomez-Climent, MA, Castillo-Gomez, E, Crespo, C, Martinez-Guijarro, FJ (2005) PSA-NCAM expression in the rat medial prefrontal cortex. Neuroscience 136: pp. 435-443 CrossRef
    68. Xu, X, Roby, KD, Callaway, EM (2006) Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol 499: pp. 144-160 CrossRef
    69. Su, J, Gorse, K, Ramirez, F, Fox, MA (2010) Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. J Comp Neurol 518: pp. 229-253 CrossRef
    70. Voinescu, PE, Kay, JN, Sanes, JR (2009) Birthdays of retinal amacrine cell subtypes are systematically related to their molecular identity and soma position. J Comp Neurol 517: pp. 737-750 CrossRef
    71. Fortune, T, Lurie, DI (2009) Chronic low-level lead exposure affects the monoaminergic system in the mouse superior olivary complex. J Comp Neurol 513: pp. 542-558 CrossRef
    72. Su, J, Stenbjorn, RS, Gorse, K, Su, K, Hauser, KF, Ricard-Blum, S, Pihlajaniemi, T, Fox, MA (2012) Target-derived matricryptins organize cerebellar synapse formation through alpha3beta1 integrins. Cell Rep 2: pp. 223-230 CrossRef
    73. Marcucci, F, Zou, DJ, Firestein, S (2009) Sequential onset of presynaptic molecules during olfactory sensory neuron maturation. J Comp Neurol 516: pp. 187-198 CrossRef
    74. Garbelli, R, Inverardi, F, Medici, V, Amadeo, A, Verderio, C, Matteoli, M, Frassoni, C (2008) Heterogeneous expression of SNAP-25 in rat and human brain. J Comp Neurol 506: pp. 373-386 CrossRef
    75. Jakovcevski, I, Siering, J, Hargus, G, Karl, N, Hoelters, L, Djogo, N, Yin, S, Zecevic, N, Schachner, M, Irintchev, A (2009) Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development. J Comp Neurol 513: pp. 496-510 CrossRef
    76. Gallart-Palau, X, Tarabal, O, Casanovas, A, Sabado, J, Correa, FJ, Hereu, M, Piedrafita, L, Caldero, J, Esquerda, JE (2014) Neuregulin-1 is concentrated in the postsynaptic subsurface cistern of C-bouton inputs to alpha-motoneurons and altered during motoneuron diseases. Faseb J.
    77. Cardona, A, Saalfeld, S, Schindelin, J, Arganda-Carreras, I, Preibisch, S, Longair, M, Tomancak, P, Hartenstein, V, Douglas, RJ (2012) TrakEM2 software for neural circuit reconstruction. PLoS ONE 7: pp. e38011 CrossRef
    78. Dilger, EK, Shin, HS, Guido, W (2011) Requirements for synaptically evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus of the mouse. J Physiol 589: pp. 919-937 CrossRef
    79. Turner, JP, Salt, TE (1998) Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurons in vitro. J Physiol 510: pp. 829-843 CrossRef
    80. Govindaiah, , Cox, CL (2004) Synaptic activation of metabotropic glutamate receptors regulates dendritic outputs of thalamic interneurons. Neuron 41: pp. 611-623 CrossRef
  • 刊物主题:Neurosciences; Developmental Biology;
  • 出版者:BioMed Central
  • ISSN:1749-8104
文摘
Background Mouse visual thalamus has emerged as a powerful model for understanding the mechanisms underlying neural circuit formation and function. Three distinct nuclei within mouse thalamus receive retinal input, the dorsal lateral geniculate nucleus (dLGN), the ventral lateral geniculate nucleus (vLGN), and the intergeniculate nucleus (IGL). However, in each of these nuclei, retinal inputs are vastly outnumbered by nonretinal inputs that arise from cortical and subcortical sources. Although retinal and nonretinal terminals associated within dLGN circuitry have been well characterized, we know little about nerve terminal organization, distribution and development in other nuclei of mouse visual thalamus. Results Immunolabeling specific subsets of synapses with antibodies against vesicle-associated neurotransmitter transporters or neurotransmitter synthesizing enzymes revealed significant differences in the composition, distribution and morphology of nonretinal terminals in dLGN, vLGN and IGL. For example, inhibitory terminals are more densely packed in vLGN, and cortical terminals are more densely distributed in dLGN. Overall, synaptic terminal density appears least dense in IGL. Similar nuclei-specific differences were observed for retinal terminals using immunolabeling, genetic labeling, axonal tracing and serial block face scanning electron microscopy: retinal terminals are smaller, less morphologically complex, and more densely distributed in vLGN than in dLGN. Since glutamatergic terminal size often correlates with synaptic function, we used in vitro whole cell recordings and optic tract stimulation in acutely prepared thalamic slices to reveal that excitatory postsynaptic currents (EPSCs) are considerably smaller in vLGN and show distinct responses following paired stimuli. Finally, anterograde labeling of retinal terminals throughout early postnatal development revealed that anatomical differences in retinal nerve terminal structure are not observable as synapses initially formed, but rather developed as retinogeniculate circuits mature. Conclusions Taken together, these results reveal nuclei-specific differences in nerve terminal composition, distribution, and morphology in mouse visual thalamus. These results raise intriguing questions about the different functions of these nuclei in processing light-derived information, as well as differences in the mechanisms that underlie their unique, nuclei-specific development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700