\(F(R)\) bouncing cosmology with future singularity in brane-anti-brane syste
详细信息    查看全文
  • 作者:Alireza Sepehri ; Anirudh Pradhan ; Somayyeh Shoorvazi
  • 关键词:Bouncing cosmology ; Future singularity ; Branes ; antibranes
  • 刊名:Astrophysics and Space Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:361
  • 期:2
  • 全文大小:874 KB
  • 参考文献:Ade, P.A.R., et al. (Planck Collaboration): Astron. Astrophys. 571, A22 (2014). arXiv:​1303.​5082 [astro-ph.CO] CrossRef
    Ade, P.A.R., et al. (Planck Collaboration): arXiv:​1502.​02114 [astro-ph.CO] (2015)
    Adler, R.J., Chen, P., Santiago, D.I.: Gen. Relativ. Gravit. 33, 2101 (2001). arXiv:​gr-qc/​0106080 CrossRef MathSciNet ADS MATH
    Ali, A.F.: J. High Energy Phys. 1209, 067 (2012) CrossRef ADS
    Ali, A.F., Das, S., Vagenas, E.C.: Phys. Lett. B 678, 497 (2009) CrossRef MathSciNet ADS
    Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 216, 41 (1989) CrossRef ADS
    Amoros, J., de Haro, J., Odintsov, S.D.: Phys. Rev. D 89, 104010 (2014) CrossRef ADS
    Bagger, J., Lambert, N.: Phys. Rev. D 77, 065008 (2008). arXiv:​0711.​0955 [hep-th] CrossRef MathSciNet ADS
    Bamba, K., Makarenko, A.N., Myagky, A.N., Odintsov, S.D.: J. Cosmol. Astropart. Phys. 1504, 001 (2015). arXiv:​1411.​3852 CrossRef MathSciNet ADS
    Barragan, C., Olmo, G.J., Sanchis-Alepuz, H.: Phys. Rev. D 80, 024016 (2009) CrossRef ADS
    Cavaglia, M., Das, S., Maartens, R.: Class. Quantum Gravity 20, L205 (2003). arXiv:​hep-ph/​0305223 CrossRef MathSciNet ADS MATH
    Chu, C.-S., Smith, D.J.: J. High Energy Phys. 0904, 097 (2009) CrossRef ADS
    Constable, N.R., Myers, R.C., Tafjord, O.: J. High Energy Phys. 0106, 023 (2001) CrossRef MathSciNet ADS
    Das, S., Vagenas, E.C.: Phys. Rev. Lett. 101, 221301 (2008). arXiv:​0810.​5333 [hep-th] CrossRef ADS
    Gorbunov, D.S., Rubakov, V.A.: Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory p. 489. World Scientific, Hackensack (2011) CrossRef
    Grignani, G., Harmark, T., Marini, A., Obers, N.A., Orselli, M.: J. High Energy Phys. 1106, 058 (2011) CrossRef ADS
    Gustavsson, A.: Nucl. Phys. B 811, 66 (2009). arXiv:​0709.​1260 [hep-th] CrossRef MathSciNet ADS MATH
    Ho, P.-M., Matsuo, Y.: J. High Energy Phys. 0806, 105 (2008) CrossRef MathSciNet ADS
    Kempf, A., Mangano, G., Mann, R.B.: Phys. Rev. D 52, 1108 (1995) CrossRef MathSciNet ADS
    Kluson, J.: J. High Energy Phys. 0011, 016 (2000) CrossRef MathSciNet ADS
    Kluson, J.: Phys. Rev. D 64, 126006 (2001) CrossRef MathSciNet ADS
    Maggiore, M.: Phys. Lett. B 304, 65 (1993) CrossRef ADS
    Mukhanov, V.: Physical Foundations of Cosmology p. 421. Cambridge University Press, Cambridge (2005) CrossRef MATH
    Mukhi, S., Papageorgakis, C.: J. High Energy Phys. 0805, 085 (2008) CrossRef MathSciNet ADS
    Myers, R.C.: J. High Energy Phys. 9912, 022 (1999). arXiv:​hep-th/​9910053 CrossRef ADS
    Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) CrossRef MathSciNet MATH
    Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011) CrossRef MathSciNet ADS
    Odintsov, S.D., Oikonomou, V.K.: Phys. Rev. D 90, 124083 (2014) CrossRef ADS
    Odintsov, S.D., Oikonomou, V.K.: Phys. Rev. D 91, 064036 (2015a) CrossRef MathSciNet ADS
    Odintsov, S.D., Oikonomou, V.K.: Phys. Rev. D 92, 024016 (2015b). arXiv:​1504.​06866 [gr-qc] CrossRef MathSciNet ADS
    Odintsov, S.D., Oikonomou, V.K., Saridakis, E.N.: arXiv:​1501.​06591 [gr-qc] (2015)
    Paul, N., Chakrabarty, S.N., Bhattacharya, K.: J. Cosmol. Astropart. Phys. 1410, 009 (2014) CrossRef ADS
    Sathiapalan, B., Sircar, N.: J. High Energy Phys. 0808, 019 (2008) CrossRef MathSciNet ADS
    Sepehri, A.: Phys. Lett. B 748, 328335 (2015a). arXiv:​1508.​01407 [gr-qc] CrossRef
    Sepehri, A.: Mod. Phys. Lett. A (2015b). arXiv:​1510.​07961 [physics.gen-ph]. doi:10.​1142/​S021773231650004​8
    Sepehri, A., Rahaman, F., Pradhan, A., Sardar, I.H.: Phys. Lett. B 741, 92 (2015a) CrossRef
    Sepehri, A., Rahman, F., Setare, M.R., Pradhan, A., Capozziello, S.I.H.: Phys. Lett. B 747, 1 (2015b) CrossRef ADS
    Sepehri, A., Setare, M.R., Capozziello, S.: Eur. Phys. J. C 75, 618 (2015c) CrossRef ADS
    Setare, M.R., Sepehri, A.: J. High Energy Phys. 1503, 079 (2015a) CrossRef MathSciNet ADS
    Setare, M.R., Sepehri, A.: Phys. Rev. D 91, 063523 (2015b) CrossRef ADS
    Tseytlin, A.A.: arXiv:​hep-th/​9908105 (1999)
  • 作者单位:Alireza Sepehri (1) (2)
    Anirudh Pradhan (3)
    Somayyeh Shoorvazi (2) (4)

    1. Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman, Iran
    2. Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha, Iran
    3. Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281 406, Uttar Pradesh, India
    4. Department of Physics, Islamic Azad University, Neyshabur Branch, Neyshabur, Iran
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
  • 出版者:Springer Netherlands
  • ISSN:1572-946X
文摘
Recently Odintsov and Oikonomou (Phys. Rev. D 92:024016, 2015b) proposed the origin of a Type \(\mathit{IV}\) singular bounce in a modified gravity and found an explicit form of \(F(R)\) which can generate this type of bouncing cosmological evolution. In this paper, we construct their model in string theory and show that interaction between branes is the main cause of \(F(R)\) bouncing cosmology. In our technique, \(N\) fundamental strings decay first to \(N\) \(M0\)-anti-\(M0\)-brane then, \(M0\)-branes link to each other, originate and form an \(M3\)-anti-\(M3\) system. Our universe is located on one of these \(M3\)-branes and interact with the universe on another \(M3\)-brane via some scalars. The branes in this system wrap around each other and form a compacted system. This process causes to a contraction of universes and produces a contraction branch in a \(F(R)\) bouncing model of cosmology. Also, the relevant actions of compacted \(M3\)-branes include higher order of derivatives which lead to communication relations in generalized uncertainty principle. On the other hand, branes and anti-branes absorb each other, the radius of compactification is reduced, some of scalars gain negative square masses and become tachyons. This system is unstable, broken and branes rebound to non-compact state during an expansion branch. With opening of branes, some other scalars achieve to tachyon phase and consequently, this epoch stops. This process may be repeated in different branches. In this theory, the Type \(\mathit{IV}\) singularity occurs at \(t = t_{s}\), which is the time of producing tachyons between two branches. It is observed that the derived model is in good agreement with recent Planck data (Ade et al. in arXiv:​1502.​02114 [astro-ph.CO], 2015 and in Astron. Astrophys. 571:A22, 2014) and obtain the bouncing point.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700