Non-Fourier heat conduction in a thin gold film heated by an ultra-fast-laser
详细信息    查看全文
  • 作者:YuDong Mao (1) (2)
    MingTian Xu (1)

    1. Department of Engineering Mechanics
    ; School of Civil Engineering ; Shandong University ; Jinan ; 250061 ; China
    2. School of Energy and Power Engineering
    ; Shandong University ; Jinan ; 250061 ; China
  • 关键词:Nano ; scale heat conduction ; ultrafast laser heating ; thin film ; Knudsen number
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:58
  • 期:4
  • 页码:638-649
  • 全文大小:980 KB
  • 参考文献:1. Boyd, I W (1989) Laser Processing of Thin Films and Microstructures. Springer, New York
    2. Narayan, J, Godbole, V P, White, G W (1991) Laser method for synthesis and processing of continuous diamond films on nondiamound substrates. Science 52: pp. 416-418 CrossRef
    3. Chryssolouris, G (1991) Laser Machining, Theory and Practice. Springer, New York
    4. Qiu, T Q, Tien, C L (1992) Short-pulse laser heating on metals. Int J Heat Mass Tran 35: pp. 719-726 CrossRef
    5. Qiu, T Q, Tien, C L (1993) Heat transfer mechanisms during short-pulse laser heating of metals. J Heat Trans-T ASME 115: pp. 835-841 CrossRef
    6. Lee, Y M, Tsai, T W (2007) Ultra-fast pulse-laser heating on a two-layered semi-infinite material with interfacial contact conductance. Int Commun Heat Mass 34: pp. 45-51 CrossRef
    7. Chen, J K, Beraun, J E, Tham, C L (2004) Ultrafast thermoelasticity for short-pulse laser heating. Int J Eng Sci 42: pp. 793-807 CrossRef
    8. Huang, J, Zhang, Y W, Chen, J K (2009) Ultrafast solid-liquid-vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses. Int J Heat Mass Tran 52: pp. 3091-3100 CrossRef
    9. Zhang, Y, Faghri, A, Buckley, C W (2000) Three-dimensional sintering of two-component metal powders with stationary and moving laser beams. J Heat Trans-T ASME 122: pp. 150-158 CrossRef
    10. Zacharia, T, David, S A, Vitek, J M (1989) Heat transfer during Nd: Yag pulsed laser welding and its effect on solidification structure of austenitic stainless steels. Metall Trans A 20: pp. 957-967 CrossRef
    11. Shiomi, M, Yoshidome, A, Abe, F (1999) Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders. Int J Mach Tool Manu 39: pp. 237-252 CrossRef
    12. Ganesh, R K, Faghi, A, Hahn, Y (1997) A generalized thermal modeling for laser drilling process: 1. Mathematical modeling and numerical methodology. Int J Heat Mass Tran 40: pp. 3351-3360 CrossRef
    13. Agarwala, M, Bourell, D, Beaman, J (1995) Direct selective laser sintering of metals. Rapid Prototyping J 1: pp. 26-36 CrossRef
    14. Iranov, D S, Zhigilei, L V (2007) Kinetic limit of heterogeneous melting in metals. Phys Rev Lett 98: pp. 1957011-1957014
    15. Chen, J K, Tzou, D Y, Beraun, J E (2006) A semiclassical two-temperature model for ultrafast laser heating. Int J Heat Mass Tran 49: pp. 307-316 CrossRef
    16. Yilbas, B S, Al-Dweik, A Y (2011) Analytical solution of hypobolic heat conduction equation in relation to laser short-pulse heating. Physica B 406: pp. 1550-1555 CrossRef
    17. Gan, Y, Chen, J K (2011) Combined continuum-atomistic modeling of ultrashort-pulsed laser irradiation of silicon. Appl Phys A-Mater 105: pp. 427-437 CrossRef
    18. Amer, M S, El-Ashry, M A, Dosser, L R (2005) Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers. Appl Surf Sci 242: pp. 162-167 CrossRef
    19. Korfiatis, D P, Thoma, K A, Vardaxoglou, J C (2009) Numerical modeling of ultrashort-pulse laser ablation of silicon. Appl Surf Sci 255: pp. 7605-7609 CrossRef
    20. Gan, Y, Chen, J K (2010) Thermo-mechanical wave propagation in gold films induced by ultrashort laser pulses. Mech Mater 42: pp. 491-501 CrossRef
    21. Elsayed-Ali, H E, Norris, T B, Pessot, M A (1987) Time-resolved observation of electron卤phonon relaxation in copper. Phys Rev Lett 58: pp. 1212-1215 CrossRef
    22. Brorson, S D, Fujimoto, J G, Ippen, E P (1987) Femtosecond electron heat-transport dynamics in thin gold film. Phys Rev Lett 59: pp. 1962-1965 CrossRef
    23. Qiu, T Q, Tien, C L (1994) Femtosecond laser heating of multilayered metals-I. Analysis. Int J Heat Mass Tran 37: pp. 2789-2797 CrossRef
    24. Bugajskia, M, Tomasz, S T, Dorota, W (2006) Thermoreflectance study of facet heating in semiconductor lasers Materials. Mat Sci Semicon Proc 9: pp. 188-197 CrossRef
    25. Ocan, J L, Morales, M, Molpeceres, C (2007) Short pulse laser microforming of thin metal sheets for MEMS manufacturing. Appl Surf Sci 254: pp. 997-1001 CrossRef
    26. Tzou, D Y (1996) Macro- to Microscale Heat Transfer: The Lagging Behavior. Taylor & Francis, Washington, DC
    27. Xu, M, Guo, J, Wang, L (2011) Thermal wave interference as the origin of the overshooting phenomenon in dual-phase-lagging heat conduction. Int J Therm Sci 50: pp. 825-830 CrossRef
    28. Joshi, A A, Majumdar, A (1993) Transient ballistic and diffusive phonon heat transport in thin films. J Appl Phys 74: pp. 31 CrossRef
    29. Ghai, S S, Kim, W T, Jhon, M S (2005) A novel heat transfer model and its application to information storage systems. J Appl Phys 97: pp. 10P703 CrossRef
    30. Cattaneo, C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus 247: pp. 431-435
    31. Vernotte, P (1961) Some possible complications in the phenomena of thermal conduction. Compte Rendus 252: pp. 2190-2193
    32. Tzou, D Y (1995) The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Tran 38: pp. 3231-3234 CrossRef
    33. Xu, M, Wang, L (2008) Single- and dual-phase-lagging heat conduction models in moving media. J Heat Trans-T ASME 130: pp. 1-6
    34. Wang, L, Xu, M (2005) Well-posedness and solution structure of dual-phaselagging heat conduction. Int J Heat Mass Tran 48: pp. 1165-1171
    35. Xu, M, Wang, L (2002) Thermal oscillation and resonance in dual-phaselagging heat conduction. Int J Heat Mass Tran 45: pp. 1055-1061 CrossRef
    36. Shen, B, Zhang, P (2008) Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model. Int J Heat Mass Tran 51: pp. 1713-1716 CrossRef
    37. Ghazanfarian, J, Abbassi, A (2009) Effect of boundary phonon scattering on dual-phase-lag model to simulate micro-and nano-scale heat conduction. Int J Heat Mass Tran 52: pp. 3706-3711 CrossRef
    38. Alvarez, F X, Jou, D (2007) Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes. Appl Phys Lett 90: pp. 083109 CrossRef
    39. Alvarez, F X, Jou, D (2008) Size and frequency dependence of effective thermal conductivity in nanosystems. J Appl Phys 103: pp. 094321 CrossRef
    40. Tzou, D Y, Chiu, K S (2001) Temperature-dependent thermal lagging in ultrafast laser heating. Int J Heat Mass Tran 44: pp. 1725-1732 CrossRef
    41. Tzou, D Y, Chen, J K, Beraun, J E (2002) Hot-electron blast induced by ultra short-pulsed lasers in layered media. Int J Heat Mass Tran 45: pp. 3369-3382 CrossRef
    42. Torii, S C, Yang, W J (2005) Heat transfer mechanisms in thin film with laser heat source. Int J Heat Mass Tran 48: pp. 537-544 CrossRef
    43. Chen, G (2002) Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J Heat Trans-T ASME 124: pp. 320-327 CrossRef
    44. Alvarez, F X, Jou, D (2010) Boundary conditions and evolution of ballistic heat transport. J Heat Trans-T ASME 132: pp. 012404 1-6 CrossRef
    45. Hua, Y C, Cao, B Y (2014) Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations. Int J Heat Mass Tran 78: pp. 755-759 CrossRef
    46. Xu, M T (2013) Slip boundary condition of heat flux in Knudsen layers. P Roy Soc Lond A Mat 470: pp. 20130578 CrossRef
    47. Amon, C H, Ghai, S S, Kim, W T (2006) Modeling of nanoscale transport phenomena: Application to information technology. Physica A 362: pp. 36-41 CrossRef
    48. Zhang, M K, Cao, B Y, Guo, Y C (2014) Numerical studies on damping of thermal waves. Int J Therm Sci 84: pp. 9-20 CrossRef
    49. Jou, D, Casas-V谩zquez, J, Lebon, G (1999) Extended irreversible thermodynamics revisited (1988鈥?8). Rep Prog Phys 62: pp. 1035-1142 CrossRef
    50. Jou, D, Casas-V谩zquez, J, Lebon, G (2003) Extended Irreversible Thermodynamics. Berlin, Springer
    51. Jou, D, Cimmelli, V A, Sellitto, A (2009) Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers. Phys Lett A 373: pp. 4386-4392 CrossRef
    52. Xu, M T (2011) Thermodynamic basis of dual-phase-lagging heat conduction. J Heat Trans-T ASME 133: pp. 041401 1-7
    53. Makse, H A, Kurchan, J (2002) Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature 415: pp. 614-617 CrossRef
    54. Lebon, G, Machrafi, H, Grmela, M (2011) An extended thermodynamic model of transient heat conduction at sub-continuum scales. P Roy Soc Lond A Mat 467: pp. 3241-3256 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
    Engineering, general
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1900
文摘
Based on the dual-phase-lagging (DPL) heat conduction model, the Cattaneo-Vernotte (CV) model and the improved CV model we investigate the one-dimensional heat conduction in gold films with nano-scale thickness exposed to an ultra-fast laser heating. The influence of system parameters on the temperature field is explored. We find that for all the non-Fourier heat conduction models considered in this work, a larger Knudsen number normally leads to a higher temperature. For the DPL model, the large ratio of the phase lag of temperature gradient to the phase lag of heat flux reduces the maximum temperature and shortens the time for the system to reach its steady state. The CV model and the improved CV model lead to the similar thermal wave behavior of the temperature field, but the thermal wave speeds for these two models are different, especially for large Knudsen numbers. When the phase lag of temperature gradient is smaller, the difference between the DPL model and the improved CV model is not significant, but for the large phase lag of temperature gradient the difference becomes quite significant, especially for the large Knudsen number. In addition, the effect of the surface accommodation coefficient, which is a parameter in the slip boundary condition, on the temperature field of the gold film heated by ultra-fast laser pulses is investigated based on the DPL model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700