Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller
详细信息    查看全文
  • 作者:Jiao Sun (1) (2)
    Songying Chen (1) (2) (3)
    Yanpeng Qu (1) (2) (3)
    Jianfeng Li (1) (2) (3)

    1. School of Mechanical Engineering
    ; Shandong University ; Jinan ; 250061 ; China
    2. Research Center for Sustainable Manufacturing
    ; Shandong University ; Jinan ; 250061 ; China
    3. Key Laboratory of High efficiency and Clean Mechanical Manufacture
    ; Ministry of Education ; Shandong University ; Jinan ; 250061 ; China
  • 关键词:stress corrosion cracking ; corrosion fatigue ; stainless steel ; centrifugal compressor ; impeller
  • 刊名:Chinese Journal of Mechanical Engineering
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:28
  • 期:2
  • 页码:217-225
  • 全文大小:543 KB
  • 参考文献:1. Sui, Y, Tan, Chaoxin (2000) H2S stress corrosion cracking and countermeasure for impeller of centrifugal compressor[J]. Compressor Blower & Fan Technology. pp. 19-22
    2. Fantechi, F, Innocenti, M (2001) Chloride stress corrosion cracking of precipitation hardening S.S. impellers in centrifugal compressor-laboratory investigations and corrective actions[J]. Engineering Failure Analysis. pp. 477-492
    3. Hu, Shengzhong (2009) Crack reason analysis and countermeasure of rich gas compressor impeller[J]. Corrosion & Protection in Petrochemical Industry 26: pp. 63-68
    4. Zhu, W, Qiao, L, Gao, Kewei (2000) Anodic dissolution stress corrosion[J]. Chinese Science Bulletin 12: pp. 2581-2588
    5. Yang, S, Chang, Tiejun (2003) Material corrosion and protection[M]. Harbin Engineering University Press, Harbin
    6. Qiao, L, Wang, Y, Zhu, Wuyang (1993) Mechanism of stress corrosion [M]. Science Press, Beijing
    7. HOAR T P, HINES J G. / Stress corrosion and embrittlement[M]. ROBERTSON W D, ed. New York: John Wiley, 1956.
    8. Lu, M, Bai, Z, Zhao, Xinwei (2002) Actuality and typical cases for corrosion in the process of extraction, gathering, storage and transmission for oil and gas[J]. Corrosion & Protection 2: pp. 105-113
    9. LOGAN H L. / Physical metallurgy of stress corrosion fracture[M]. RHODIN T N, ed. New York: Interscience, 1959.
    10. Scully, J C, Powell, D T (1970) Stress corrosion cracking mechanism of Titanium alloys at room temperature[J]. Corrosion Science 10: pp. 719-733 CrossRef
    11. Pakrins, R N, Greenwell, B S (1977) Interface between corrosion at fatigue and stress corrosion cracking[J]. Material Science 11: pp. 405-413
    12. Zhu, W, Qiao, L, Chen, Qizhi (1988) Hydrogen damage and delayed fracture[M]. Metallurgical Industry Press, Beijing
    13. Sieradzki, K, Newman, R C (1987) Stress corrosion cracking[J]. Journal of Physics and Chemistry of Solids 48: pp. 1101-1113 CrossRef
    14. Revie, R W, Uhlig, H H (1973) Effect of applied potential and surface dissolution on the creep behavior of copper[J]. Acta Metallurgica 22: pp. 619-627 CrossRef
    15. Jones, D A (1996) Localized surface plasticity during SCC[J]. Corrosion 5: pp. 356-362 CrossRef
    16. Magnin, T, Chieragatti, R, Bayle, B (1996) The corrosion enhanced plasticity model for SCC in F.C.C alloys[J]. Acta Materialia 44: pp. 1457-1470 CrossRef
    17. Kaufman, M J, Fink, J L (1988) Evidence for localized ductile fracture in the 鈥渂rittle鈥?transgranular stress corrosion cracking of ductile F.C.C alloys[J]. Acta Metallurgica 36: pp. 2213-2228 CrossRef
    18. Herms, E, Olivej, M, Puiggali, M (1999) Hydrogen embrittlement of 316L type stainless steel[J]. Materials Science and Engineering 272: pp. 279-283 CrossRef
    19. Eliezer, D, Chakrapani, D G, Alistetter, C J (1979) The influence of austenite stability on the hydrogen embrittlement and stress corrosion cracking of stainless steel[J]. Metallurgical Transactions A 10: pp. 935-941 CrossRef
    20. Shibuya, T, Misawa, T (1996) Transition from HIC to SSCC type cracking of carbon steel with increase of applied stresses in hydrogen sulfide solutions[J]. Corrosion Engineering 45: pp. 654-661 CrossRef
    21. Cole, I S, Andenna, C (1994) Assessment of a micro-mechanic model of hydrogen-induced stress corrosion cracking, based on a study of an X65 line pipe steel[J]. Fatigue and Fracture of Engineering Materials & Structures 17: pp. 265-275 CrossRef
    22. Ravi, K, Ramaswamy, V, Namboodhiri, T K G (1993) Effect of molybdenum on the resistance to H2S of high sulphur microalloyed steels[J]. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing A169: pp. 111-118 CrossRef
    23. Burk, J D (1996) Hydrogen-induced cracking in surface production systems: mechanism, inspection, repair, and prevention[J]. SPE Production & Facilities 11: pp. 49-53 CrossRef
    24. Asahi, H, Ueno, M, Yonezawa, T (1994) Prediction of sulfide stress cracking in high-strength tubular[J]. Corrosion 50: pp. 537-545 CrossRef
    25. Zhu, Wuyang (1991) The new progress of hydrogen induced cracking and stress corrosion mechanism[J]. Progress in Natural Science-Communications of State Key Laboratory 5: pp. 393-398
    26. Sun, Qiuxia (2001) Material corrosion and protection[M]. Metallurgical Industry Press, Beijing
    27. Parkins, R N, Blanchard, J W K, Delanty, B S (1994) Transgranular stress corrosion cracking of high pressure pipelines in contact with solutions of near neutral pH[J]. Corrosion 50: pp. 394-408 CrossRef
    28. Qiao, L, Miao, H, Zhu, Wuyang (1991) The interaction of hydrogen, stress and corrosion of austenitic stainless steel[J]. China Science A. pp. 1218-1225
    29. Hirose, Y, Mura, T (1985) Crack nucleation and propogation of corrosion fatigue in high-strength steel[J]. Engineering Fracture Mechanics 22: pp. 859-870 CrossRef
    30. Griffiths, A J, Hutchings, R, Turnbull, A (1993) Validation of the role of bulk charging of hydrogen in the corrosion fatigue cracking of a low alloy steel[J]. Scripta Metallurgicaet Materialia 29: pp. 623-626 CrossRef
    31. Sudarshan, T S, Louthan, M R J (1987) Gaseous environment effects on fatigue behaviour of metals[J]. International Materials Review 32: pp. 121-151 CrossRef
    32. Austen, L M, Walker, E F (1997) The influence of environmental aggression on the corrosion fatigue behavion of steels[C]. ICMESCM, University of Surrey, Guildford 4鈥?: pp. 334-347
    33. Zhao, J, Zhou, C, Yu, Xiaochun (1999) Effect of stress ratio and loading frequency on crack growth rate of corrosion fatigue[J]. Pressure Vessel Technology. pp. 1-4
    34. Han, Enhou (1993) The influence of stress ratio and frequency on low alloy steel corrosion fatigue crack propagation mechanism[J]. Acta Metallurgica Sinica 29: pp. 223-228
    35. Socie, D F, Autolovich, S D (1974) Subcritical crack growth characteristics in welded ASTM A537 steel[J]. Welding Journal 53: pp. 267-272
    36. Ebara, R (2004) Corrosion fatigue behavior of structure materials in various environments containing of H2S gas[J]. Engineering Materials. pp. 125l-1256
    37. Huang, Xiaoguang (2013) Mechanism study of pit evolution and crack propagation for corrosion fatigue[D]. Shanghai JiaoTong University, Shanghai
    38. Wang, Tingjun (2005) The application and development of gas compressor in the petrochemical industry[J]. GM General Machinery. pp. 8-10
    Review of Published Literature on Wet H2S Cracking of Steels Through 1989[R]. NACE Publication 8X294.
    39. Zuo, Jingyi (1985) Stress corrosion cracking[M]. Xi鈥檃n Jiaotong University Press, Xi鈥檃n
    40. Zeng, T, Yu, Cunye (2011) Discussion on sulfide stress corrosion cracking[J]. Total Corrosion Control 25: pp. 9-15
    41. Zuo, Y, Zhang, Shuxia (1994) The step stress corrosion cracking of 1Cr18Ni9Ti stainless steel in H2S aqueous solution[J]. Journal of Beijing University of Chemical Technology 21: pp. 58-64
    42. Li, M, Li, X, Chen, G (1991) Experimental research of sulfide stress corrosion cracking of 16Mn(HIC) steel[J]. Journal of University of Science and Technology Beijing. pp. 4-7
    Metal corrosion damage and corrosion protection technology[M]. Chemical Industry Press, Beijing
    43. Wang, Xiaoyan (2001) The study of electrochemical behavior and stress corrosion of the CF-62 steel in H2S environment. East China University of Science and Technology, Shanghai
    44. Ebara, R (2002) Corrosion fatigue behavior of structural materials in aggressive gas environment[C]. International Fatigue Congress, Stockholm, Sweden, June 3鈥?. pp. 709-720
    45. Zhang, Y, Wang, J, Zhang, Wei (2006) Study of low frequency fatigue crack growth rate da/dN in H2S environment[J]. Pressure Vessel Technology 23: pp. 12-17
    46. Osama, M A, Rokuro, N (2007) The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions[J]. Corrosion Science 49: pp. 3040-3051 CrossRef
    47. Jani, M, Hochman, R F (1991) A mechanistic study of transgranular stress corrosion cracking of type 304 stainless steel[J]. Metallurgical Transactions A 22: pp. 1453-1461 CrossRef
    48. Swann, P R, Embury, J D (1965) High strength materials[M]. V. F. Zackay, New York
    49. Louthan, M R (1965) Initial stages of stress corrosion cracking in austenitic stainless steels[J]. Contusion 21: pp. 288-289
    50. Huang, Jiahu (1999) Corrosion-resisting casting and forging materials application manual[M]. China Machine Press, Beijing
    51. Rokuro, Nishimura (1993) The effect of chloride ions on stress corrosion cracking of type 304 and type 316 austenitic stainless steels in sulfuric acid solution[J]. Corrosion Science 34: pp. 1859-1868 CrossRef
    52. Dean, M F, Beck, F H, Stachle, R W (1967) Tunnel formation in iron-niclde-chomium alloy[J]. Corrosion 7: pp. 192-201 CrossRef
    53. Lv, G, Xu, C, Cheng, Haidong (2008) Critical chloride concentration of stress corrosion cracking for 304 stainless steel[J]. Chemical Industry and Engineering Progress 27: pp. 1284-1287
    54. Qiao, L, Zhu, W, Hsiao, C M (1988) Stress corrosion cracking and hydrogen-induced cracking in austenitic stainless steel under mode IIloading[J]. Corrosion 44: pp. 50-55 CrossRef
    55. Ye, C, Li, Q, Zhou, C (2002) The law and mechanism of corrosion fatigue crack growth of 0Cr18Ni9 austenitic stainless steel in low concentration NaCl solution[J]. Pressure Vessel Technology 17: pp. 27-31
    56. Beavers, J A, Harle, B A (2001) Mechanisms of high-pH and near-neutral pH SCC of underground pipelines[J]. Journal of Off Shore Mechanics and Arctic Engineering 123: pp. 147-151 CrossRef
    57. Liu, Z, Fan, Jiancheng (2007) Analysis on impeller crack of centrifugal compressor and repairing measures[J]. Compressor Blower & Fan Technology 5: pp. 34-39
    58. Sun, Tao (2004) Analysis of feed gas compressor rotor crack corrosion[J]. Large Scale Nitrogenous Fertilizer Industry 27: pp. 48-49
    59. Zhang, H, Jia, J, Zhang, Pu (2006) The stress corrosion of centrifugal blower impeller[J]. Compressor Blower & Fan Technology 3: pp. 23-25
    60. Krain, H (1988) Swirling impeller flow[J]. ASME Journal of Turbomachinery 110: pp. 122-128 CrossRef
    61. Xi, G, Wang, Shangjin (1992) The experimental research of the flow field of centrifugal impeller outlet and diffuser[J]. Journal of Engineering Thermophysics 13: pp. 91-96
    62. Liu, Wenhua (2003) Experimental investigation on internal flow field within the ISO-width centrifugal impeller and the vaneless diffuser[D]. Shanghai Jiaotong University, Shanghai
    63. Wu, H, Zhang, C, Huang, Shujuan (2009) One way fluid solid interaction of unshrouded centrifugal compressor impeller blade[J]. Compressor Blower & Fan Technology 4: pp. 8-11
    64. Wang, Yi (2010) Numerical simulation of fluid structure interaction for the first stage impeller in centrifugal compressor with large flow rate[D]. Dalian University of Technology, Dalian
  • 刊物主题:Mechanical Engineering; Theoretical and Applied Mechanics; Manufacturing, Machines, Tools; Engineering Thermodynamics, Heat and Mass Transfer; Power Electronics, Electrical Machines and Networks; Electronics and Microelectronics, Instrumentation;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2192-8258
文摘
Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700