Wave Propagation in Heterogeneous Media with Local and Nonlocal Material Behavior
详细信息    查看全文
  • 作者:H眉seyin G枚kmen Aksoy
  • 关键词:Heterogeneous media ; Wave propagation ; Fractional calculus ; 28A75 ; 28A78 ; 28A80 ; 28B15 ; 28C15
  • 刊名:Journal of Elasticity
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:122
  • 期:1
  • 页码:1-25
  • 全文大小:3,392 KB
  • 参考文献:1. Agrawal, O.P.: A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 337, 1鈥?2 (2008) MATH CrossRef MathSciNet
    2. Aksoy, H.G., Senocak, E.: Space-time discontinuous Galerkin method for dynamics of solids. Commun. Numer. Methods Eng. 24, 1887鈥?907 (2008) MATH CrossRef MathSciNet
    3. Almeida, R., Malinowska, A.B., Torres, D.F.M.: A fractional calculus of variations for multiple integrals with application to vibrating string. J. Math. Phys. 51, 033503 (2010) ADS CrossRef MathSciNet
    4. Auld, B.A.: Acoustic Fields and Waves in Solids. Krieger, Melbourne (1990)
    5. Balankin, A.S.: Stresses and strains in a deformable fractal medium and its fractal continuum model. Phys. Lett. A 377, 2535鈥?541 (2013) ADS CrossRef MathSciNet
    6. Balankin, A.S., Elizarraraz, E.: Hydrodynamics of fractal continuum flow. Phys. Rev. E 85, 025302(R) (2012) ADS CrossRef
    7. Bazant, Z.P., Yavari, A.: Is the cause of size effect on structural strength fractal or energetic-statistical? Eng. Fract. Mech. 72, 1鈥?1 (2005) CrossRef
    8. Calcagni, G.: Geometry and field theory in multi-fractional spacetime. J. High Energy Phys. 1, 65 (2012) ADS CrossRef MathSciNet
    9. Carpinteri, A., Chiaia, B., Cornetti, P.: Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 191, 3鈥?9 (2001) ADS MATH CrossRef
    10. Carpinteri, A., Chiaia, B., Cornetti, P.: The elastic problem for fractal media: basic theory and finite element formulation. Comput. Struct. 82, 499鈥?08 (2004) CrossRef
    11. Carpinteri, A., Cornetti, P., Sapora, A., Paola, M.D., Zingales, M.: Fractional calculus in solid mechanics: local versus non-local approach. Phys. Scr. 136, 014003 (2009) CrossRef
    12. Cotrill-Shepherd, K., Naber, M.: Fractional differential forms. J. Math. Phys. 42, 2203鈥?212 (2001) ADS CrossRef MathSciNet
    13. Cottone, G., Paola, M.D., Zingales, M.: Elastic waves propagation in 1d fractional non-local continuum. Physica E 42, 95鈥?03 (2009) ADS CrossRef
    14. Demmie, P.N., Ostoja-Starzewski, M.: Waves in fractal media. J. Elast. 104, 187鈥?04 (2011) MATH CrossRef MathSciNet
    15. Ding, H.F., Zhang, Y.X.: New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63, 1135鈥?146 (2012) MATH CrossRef MathSciNet
    16. Drapaca, C.S., Sivaloganathan, S.: A fractional model of continuum mechanics. J. Elast. 107, 105鈥?23 (2012) MATH CrossRef MathSciNet
    17. Drumheller, D.S.: Introduction to Wave Propagation in Nonlinear Fluids and Solids. Cambridge University Press, Cambridge (1998) CrossRef
    18. Epstein, M., Adeeb, M.: The stiffness of self-similar fractals. Int. J. Solids Struct. 45, 3238鈥?254 (2008) MATH CrossRef
    19. Eringen, A.C.: Mechanics of Continua. Wiley, New York (1967) MATH
    20. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002) MATH
    21. Fan, H.L., Jin, F.N., Fang, D.N.: Mechanical properties of hierarchical cellular materials. Part I: Analysis. Compos. Sci. Technol. 68, 3380鈥?387 (2008) CrossRef
    22. Fix, G.J., Roop, J.P.: Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017鈥?033 (2004) MATH CrossRef MathSciNet
    23. Hatami-Marbini, H., Picu, R.C.: Heterogeneous long-range correlated deformation of semi-flexible random fiber networks. Phys. Rev. E 80, 046703 (2009) ADS CrossRef
    24. Hilfer, R.: Threefold introduction to fractional derivatives. In: Klages, R., Radons, G., Sokolov, I.M. (eds.) Anomalous Transport: Foundations and Applications, pp. 17鈥?3. Wiley, New York (2008) CrossRef
    25. Jumarie, G.: On the representation of fractional brownian motion as an integral with respect to (dt) a . Appl. Math. Lett. 18, 739鈥?48 (2005) MATH CrossRef MathSciNet
    26. Jumarie, G.: From lagrangian mechanics fractal in space to space fractal Schrodinger鈥檚 equation via fractional Taylor鈥檚 series. Chaos Solitons Fractals 41, 1590鈥?604 (2009) ADS MATH CrossRef MathSciNet
    27. Jumarie, G.: An approach to differential geometry of fractional order via modified Riemann-Liouville derivative. Acta Math. Sin. 28, 1741鈥?768 (2012) MATH CrossRef MathSciNet
    28. Kolwankar, K.M.: Studies of fractal structures and processes using methods of fractional calculus. Ph.D. thesis, University of Pune, Pune, India (1998)
    29. Lazopoulos, K.A.: Non-local continuum mechanics and fractional calculus. Mech. Res. Commun. 33, 753鈥?57 (2006) MATH CrossRef MathSciNet
    30. Ma, H.S., Prevost, J.H., Sherer, G.W.: Elasticity of DLCA model gels with loops. Int. J. Solids Struct. 39, 4605鈥?616 (2002) MATH CrossRef
    31. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010) MATH CrossRef
    32. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, Berlin (1982) MATH
    33. Michelitsch, T.M., Maugin, G.A., Rahman, M., Derogar, S., Nowakowski, A.F., Nicolleau, F.C.G.A.: An approach to generalized one-dimensional self-similar elasticity. Int. J. Eng. Sci. 61, 103鈥?11 (2012) CrossRef MathSciNet
    34. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) MATH
    35. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (1998)
    36. Norris, A., Shuvalov, A.L., Kutsenko, A.A.: Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proc. R. Soc. A 468, 1629鈥?651 (2012). doi:10.鈥?098/鈥媟spa.鈥?011.鈥?698 ADS CrossRef MathSciNet
    37. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl. 64, 3351鈥?366 (2012) MATH CrossRef MathSciNet
    38. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover, New York (2006)
    39. Ostoja-Starzewski, M.: Towards thermoelasticity of fractal media. J. Therm. Stresses 30, 889鈥?96 (2007) CrossRef
    40. Paola, M.D., Zingales, M.: Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int. J. Solids Struct. 45, 5642鈥?659 (2008) MATH CrossRef
    41. Plona, T.J.: Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett. 36, 259鈥?61 (1980) ADS CrossRef
    42. Ren, F.Y., Yu, Z.G., Mehaute, A., Nigmatullin, R.R.: The relationship between the fractional integral and the fractal structure of a memory set. Physica A 246, 419鈥?29 (1997) ADS CrossRef
    43. Ren, F.Y., Liang, J.R., Wang, X.T., Qiu, W.Y.: Integrals and derivatives on net fractals. Chaos Solitons Fractals 16, 107鈥?17 (2003) ADS MATH CrossRef MathSciNet
    44. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50(1), 15鈥?7 (1997) ADS CrossRef MathSciNet
    45. Sahimi, M.: Linear and nonlinear, scalar and vector transport processes in heterogeneous media: Fractals, percolation, and scaling laws. Chem. Eng. J. 64, 21鈥?4 (1996)
    46. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, New York (1993) MATH
    47. Sapora, A., Cornetti, P., Carpinteri, A.: Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Commun. Nonlinear Sci. Numer. Simul. 18, 63鈥?4 (2013) ADS MATH CrossRef MathSciNet
    48. Singh, S.J., Chatterjee, A.: Galerkin projections and finite elements for fractional order derivatives. Nonlinear Dyn. 45, 183鈥?06 (2006) MATH CrossRef MathSciNet
    49. Tang, H.P., Wang, J.Z., Zhu, J.L., Ao, Q.B., Wang, J.Y., Yang, B.J., Li, Y.N.: Fractal dimension of pore-structure of porous metal materials made by stainless steel powder. Powder Technol. 217, 383鈥?87 (2012) CrossRef
    50. Tarasov, V.: Fractional vector calculus and fractional Maxwell鈥檚 equations. Ann. Phys. 323, 2756鈥?778 (2008) ADS MATH CrossRef MathSciNet
    51. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010) CrossRef
    52. Tarasov, V., Zaslavsky, G.M.: Dynamic with low-level fractionality. Physica A 368, 399鈥?15 (2006) ADS CrossRef MathSciNet
    53. Willis, J.R.: The construction of effective relations in a composite. C. R. Mech. 340, 181鈥?92 (2012) CrossRef
    54. Wyss, H.M., Deliormanli, A.M., Tervoort, E., Gauckler, L.J.: Influence of microstructure on the rheological behavior of dense particle gels. AIChE J. 51, 134鈥?41 (2005) CrossRef
    55. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200鈥?18 (2010) MATH CrossRef MathSciNet
  • 作者单位:H眉seyin G枚kmen Aksoy (1)

    1. A Teknoloji, Akp谋nar Mah. 850. Cad. No:4 D:13, 06450, Dikmen Ankara, Turkey
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-2681
文摘
Wave propagation in heterogeneous solids has been an interest of researchers due to industrial applications. Some of the heterogeneous materials can exhibit power law scaling in material behavior which can be characterized by the fractal dimension of the microstructure. In this study, wave propagation in heterogeneous media with self-similar structure is investigated via fractional calculus along with space-time discontinuous Galerkin method. One and two dimensional problems are studied to demonstrate the capability of the proposed model in modeling heterogeneous media. The results show that the proposed model is a good candidate for modeling the mechanical behavior of disordered materials. Keywords Heterogeneous media Wave propagation Fractional calculus

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700