Ultrafast measurement of transient electroosmotic flow in microfluidics
详细信息    查看全文
  • 作者:1. Biomedical Engineering Program & Department of Mechanical Engineering ; University of South Carolina ; Columbia ; SC 29208 ; USA2. State Key Lab of Modern Optical Instrumentation ; Zhejiang University ; Hangzhou ; 310027 China3. Department of Mechanical Engineering ; Clemson University ; Clemson ; SC 29634-0921 ; USA
  • 关键词:Laser ; induced fluorescence photobleaching anemometer – ; LIFPA – ; DC electroosmotic flow – ; Rise time – ; Transient electrokinetic flow
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:11
  • 期:3
  • 页码:353-358
  • 全文大小:345.8 KB
  • 参考文献:1. Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39:159–169
    2. Bazant MZ, Ben Y (2006) Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip 6:1455–1461
    3. Bazant MZ, Kilicb MS, Storey BD, Ajdarid A (2009) Towards an understanding of nonlinear electrokinetics at large applied voltages in concentrated solutions. Adv Colloid Interface Sci 152:48–88
    4. Bruun HH, Farrar B, Watson I (1989) A swinging arm calibration method for low velocity hot-wire probe calibration. Exp Fluids 7:400–404
    5. Chang CC, Wang CY (2008) Starting electroosmotic flow in an annulus and in a rectangular channel. Electrophoresis 29:2970–2979
    6. Crimaldi JP (1997) The effect of photobleaching and velocity fluctuations on single-point LIF measurements. Exp Fluids 23:325–330
    7. Devasenathipathy S, Santiago JG, Takehara K (2002) Particle tracking techniques for electrokinetic microchannel flows. Anal Chem 74:3704–3713. doi:
    8. Di Leonardo R, Leach J, Mushfique H, Cooper JM, Ruocco G, Padgett MJ (2006) Multipoint holographic optical velocimetry in microfluidic systems. Phys Rev Lett 96:134502–134504
    9. Dose EV, Guiochon G (1993) Timescales of transient processes in capillary electrophoresis. J Chromatogr A 652:263–275
    10. Eggeling C, Widengren J, RR C, Seidel AM (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70:2651–2659
    11. Flamion B, Bungay PM, Gibson CC, Spring KR (1991) Flow rate measurements in isolated perfused kidney tubules by fluorescence photobleaching recovery. Biophys J 60:1229–1242
    12. Frumin LL, Peltek SE, Zilberstein GV (2001) Nonlinear electrophoresis and focusing of macromolecules. J Biochem Biophys Methods 48:269–282
    13. Heiger DN, Carson SM, Cohen AS, Karger BL (1992) Wave form fidelity in pulsed-field capillary electrophoresis. Anal Chem 64:192–199. doi:
    14. Hu H, Koochesfahani MM (2006) Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder. Meas Sci Technol 17:1269–1281
    15. Hunter MW, Callaghan PT (2007) NMR measurement of nonlocal dispersion in complex flows. Phys Rev Lett 99:210602–210604
    16. Kang Y, Yang C, Huang X (2002) Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. Int J Eng Sci 40:2203–2221
    17. Kim D, Posner JD, Santiago JG (2008) High flow rate per power electroosmotic pumping using low ion density solvents. Sens Actuators A 141:201–212
    18. Kirby B (2010) Micro- and nanoscale fluid mechanics—transport in microfluidic devices. Cambridge University Press, Cambridge
    19. Kuang C, Wang G (2010) A far-field nanoscopic velocimeter for nanofluidics. Lab Chip 10:240–245
    20. Kuang C, Yang F, Zhao W, Wang G (2009a) Study of the rise time of electroosmotic flow within a microcapillary. Anal Chem 81:6590–6595
    21. Kuang C, Zhao W, Yang F, Wang G (2009b) Measuring flow velocity distribution in microchannels using molecular tracers. Microfluid Nanofluid 7:509–517
    22. Lin C-H, Wang J-H, Fu L-M (2008) Improving the separation efficiency of DNA biosamples in capillary electrophoresis microchips using high-voltage pulsed DC electric fields. Microfluid Nanofluid 5:403–410
    23. Manz B, Stilbs P, Joensson B, S枚derman O, Callaghan PT (1995) NMR imaging of the time evolution of electroosmotic flow in a capillary. J Phys Chem 99:11297–11301. doi:
    24. Mischler M, Fan-Gang T, Ulmanella U, Chih-Ming H, Fukang J, Yu-Chong T (1995) A micro silicon hot-wire anemometer. In: TENCON ‘95, IEEE region 10 international conference on microelectronics and VLSI
    25. Pak HK, Goldburg WI, Sirivat A (1992) Measuring the probability distribution of the relative velocities in grid-generated turbulence. Phys Rev Lett 68:938
    26. Pel J, Broemeling D, Mai L, Poon H-L, Tropini G, Warren RL, Holt RA, Marziali A (2009) Nonlinear electrophoretic response yields a unique parameter for separation of biomolecules. Proc Natl Acad Sci 106:14796–14801
    27. Piorek B, Mechler A, Lal R, Freudenthal P, Meinhart C, Banerjee S (2006) Nanoscale resolution microchannel flow velocimetry by atomic force microscopy. Appl Phys Lett 89:153123
    28. Rička J (1987) Photobleaching velocimetry. Exp Fluids 5:381–384
    29. Roetmann K, Schmunk W, Garbe C, Beushausen V (2008) Micro-flow analysis by molecular tagging velocimetry and planar Raman-scattering. Exp Fluids 44:419–430
    30. Ross D, Johnson TJ, Locascio LE (2001) Imaging of electroosmotic flow in plastic microchannels. Anal Chem 73:2509–2515. doi:
    31. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319
    32. Shinohara K, Sugii Y, Aota A, Hibara A, Tokeshi M, Kitamori T, Okamoto K (2004) High-speed micro-PIV measurements of transient flow in microfluidic devices. Meas Sci Technol 15:1965–1970
    33. S枚derman O, J枚nsson B (1996) Electro-osmosis: velocity profiles in different geometries with both temporal and spatial resolution. J Chem Phys 105:10300–10311
    34. Sugarman J, Prud’homme R (1987) Effect of photobleaching on the output of an on-column laser fluorescence detector. Ind Eng Chem Res 26:1449–1454
    35. Wang GR (2005) Laser induced fluorescence photobleaching anemometer for microfluidic devices. Lab Chip 5:450–456
    36. Wang GR, Fiedler HE (2000a) On high spatial resolution scalar measurement with LIF Part 2: the noise characteristic. Exp Fluids 29:265–274
    37. Wang GR, Fiedler HE (2000b) On high spatial resolution scalar measurement with LIF. Part 1: photobleaching and thermal blooming. Exp Fluids 29:257–264
    38. Wang S-Q, Ravindranath S, Boukany P, Olechnowicz M, Quirk RP, Halasa A, Mays J (2006) Nonquiescent relaxation in entangled polymer liquids after step shear. Phys Rev Lett 97:187801–187804
    39. White J, Stelzer E (1999) Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol 9:61–65
    40. Wu DH, Chen A, Johnson CS (1995) Flow imaging by means of 1D pulsed-field-gradient NMR with application to electroosmotic flow. J Magn Reson Ser A 115:123–126
    41. Yan D, Nguyen N-T, Yang C, Huang X (2006) Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique. J Chem Phys 124:021103–021104
  • 作者单位:http://www.springerlink.com/content/5144174t61050x84/
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved to 5–10 μs, about 100 times better than that published from state-of-the-art micro particle image velocimetry (μPIV), which is currently the most widely used velocimetry in the microfluidics community. The new method provides us with new opportunities to study experimentally the fundamental phenomena of unsteady electrokinetics (EK) and to validate relevant theoretical models. One application of the new method is demonstrated by measuring the rise time of DC electroosmotic flows (EOFs) in a microcapillary of 10 μm in diameter.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700