UKF-based closed loop iterative learning control of epileptiform wave in a neural mass model
详细信息    查看全文
  • 作者:Bonan Shan (1)
    Jiang Wang (1)
    Bin Deng (1)
    Xile Wei (1)
    Haitao Yu (1)
    Huiyan Li (2)

    1. School of Electrical Engineering and Automation
    ; Tianjin University ; Tianjin ; 300072 ; People鈥檚 Republic of China
    2. School of Automation and Electrical Engineering
    ; Tianjin University of Technology and Education ; Tianjin ; 300222 ; People鈥檚 Republic of China
  • 关键词:UKF ; Iterative learning control ; Epilepsy ; Neural mass model
  • 刊名:Cognitive Neurodynamics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:9
  • 期:1
  • 页码:31-40
  • 全文大小:853 KB
  • 参考文献:1. Ahn HS, Chen YQ, Moore KL (2007) Iterative learning control: brief survey and categorization. IEEE Trans Syst Man Cybern Part C Appl Rev 37(6):1099鈥?121 CrossRef
    2. Arimoto S, Naniwa T, Suzuki H (1990) Robustness of P-type learning control with a forgetting factor for robotic motions. In: Proceedings of the 29th IEEE conference on decision and control, IEEE, Honolulu, Hawaii, pp 2640鈥?645
    3. Ber茅nyi A, Belluscio M, Mao D et al (2012) Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337(6095):735鈥?37 CrossRef
    4. Bhattacharya BS, Coyle D, Maguire LP (2011) A thalamo鈥揷ortico鈥搕halamic neural mass model to study alpha rhythms in Alzheimer鈥檚 disease. Neural Netw 24(6):631鈥?45 CrossRef
    5. Bristow DA, Tharayil M, Alleyne AG (2006) A survey of iterative learning control. IEEE Control Syst Mag 26(3):96鈥?14 CrossRef
    6. Chakravarthy N, Sabesan S, Tsakalis K et al (2009a) Controlling epileptic seizures in a neural mass model. J Comb Optim 17(1):98鈥?16 CrossRef
    7. Chakravarthy N, Tsakalis K, Sabesan S et al (2009b) Homeostasis of brain dynamics in epilepsy: a feedback control systems perspective of seizures. Ann Biomed Eng 37(3):565鈥?85 CrossRef
    8. Chien CJ, Liu JS (1996) A P-type iterative learning controller for robust output tracking of nonlinear time-varying systems. Int J Control 64(2):319鈥?34 CrossRef
    9. Chong M, Postoyan R, Ne拧i膰 D et al (2012) Estimating the unmeasured membrane potential of neuronal populations from the EEG using a class of deterministic nonlinear filters. J Neural Eng 9(2):026001 CrossRef
    10. Cona F, Zavaglia M, Massimini M et al (2011) A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG. NeuroImage 57(3):1045鈥?058 CrossRef
    11. David O, Friston KJ (2003) A neural mass model for meg/eeg: coupling and neuronal dynamics. NeuroImage 20(3):1743鈥?755 CrossRef
    12. Eeckman FH, Freeman WJ (1991) Asymmetric sigmoid non-linearity in the rat olfactory system. Brain Res 557(1鈥?):13鈥?1 CrossRef
    13. Fisher R, Salanova V, Witt T et al (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5):899鈥?08 CrossRef
    14. Freeman WJ (1977) Models of the dynamics of neural populations. Electroencephalogr Clin Neurophysiol Suppl 34:9鈥?8
    15. Freeman WJ (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56(2鈥?):139鈥?50 CrossRef
    16. Galka A, Ozaki T, Muhle H et al (2008) A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation. Cogn Neurodyn 2(2):101鈥?13 CrossRef
    17. Halpern CH, Samadani U, Litt B et al (2008) Deep brain stimulation for epilepsy. Neurotherapeutics 5(1):59鈥?7 CrossRef
    18. Han CX, Wang J, Yi GS et al (2013) Investigation of EEG abnormalities in the early stage of Parkinson鈥檚 disease. Cogn Neurodyn 7(4):351鈥?59 CrossRef
    19. Hodaie M, Wennberg RA, Dostrovsky JO et al (2002) Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 43(6):603鈥?08 CrossRef
    20. Iasemidis LD, Sabesan S, Chakravarthy N et al (2009) Brain dynamics and modeling in epilepsy: prediction and control studies. In: Dana SK, Roy PK, Kurths J (eds) Complex dynamics of physiological systems: from heart to brain, part IV. Springer Science聽+聽Business Media B.V., Berlin, pp 185鈥?14 CrossRef
    21. Jansen BH, Zouridakis G, Brandt ME (1993) A neurophysiologically-based mathematical model of flash visual evoked potentials. Biol Cybern 68(3):275鈥?83 CrossRef
    22. Jobst BC, Darcey TM, Thadani VM et al (2010) Brain stimulation for the treatment of epilepsy. Epilepsia 51(s3):88鈥?2 CrossRef
    23. Julier S, Uhlmann J, Durrant-Whyte HF (2000) A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans Autom Control 45(3):477鈥?82 CrossRef
    24. Kerrigan JF, Litt B, Fisher RS et al (2004) Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia 45(4):346鈥?54 CrossRef
    25. Kiebel SJ, Garrido MI, Moran RJ et al (2008) Dynamic causal modelling for EEG and MEG. Cogn Neurodyn 2(2):121鈥?36 CrossRef
    26. Li Z, O鈥橠oherty JE, Hanson TL et al (2009) Unscented Kalman filter for brain-machine interfaces. PLoS One 4(7):e6243 CrossRef
    27. Little S, Brown P (2012) What brain signals are suitable for feedback control of deep brain stimulation in Parkinson鈥檚 disease? Ann N Y Acad Sci 1265(1):9鈥?4 CrossRef
    28. Liu X, Gao Q (2013) Parameter estimation and control for a neural mass model based on the unscented Kalman filter. Phys Rev E 88(4):042905 CrossRef
    29. Lopes da Silva FH, Hoeks A, Smits H et al (1974) Model of brain rhythmic activity. Kybernetik 15(1):27鈥?7 CrossRef
    30. Lopes da Silva FH, Van Rotterdam A, Barts P et al (1976) Models of neuronal populations: the basic mechanisms of rhythmicity. Prog Brain Res 45:281鈥?08 CrossRef
    31. Ma Y, Wang Z, Zhao X et al (2010) A UKF algorithm based on the singular value decomposition of state covariance. In: Proceedings of the 8th World congress on intelligent control and automation, IEEE, Jinan, China, pp 5830鈥?835
    32. Moore KL (2001) An observation about monotonic convergence in discrete-time, P-type iterative learning control. In: Proceedings of the 2001 IEEE international symposium on l, IEEE, Mexico, USA, pp 45鈥?9
    33. Moore KL, Dahleh M, Bhattacharyya SP (1992) Iterative learning control: a survey and new results. J Robot Syst 9(5):563鈥?94 CrossRef
    34. Morrell MJ (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77(13):1295鈥?304 CrossRef
    35. Nevado-Holgado AJ, Marten F, Richardson MP et al (2012) Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: application to epilepsy seizure evolution. Neuroimage 59(3):2374鈥?392 CrossRef
    36. Nguyen DP, Wilson MA, Brown EN et al (2009) Measuring instantaneous frequency of local field potential oscillations using the Kalman smoother. J Neurosci Methods 184(2):365鈥?74 CrossRef
    37. Rummel C, Abela E, Hauf M et al (2013) Ordinal patterns in epileptic brains: analysis of intracranial EEG and simultaneous EEG-fMRI. Eur Phys J Spec Top 222(2):569鈥?85 CrossRef
    38. Saab SS (1994) On the P-type learning control. IEEE Trans Autom Control 39(11):2298鈥?302 CrossRef
    39. Santaniello S, Fiengo G, Glielmo L et al (2011) Closed-loop control of deep brain stimulation: a simulation study. IEEE Trans Neural Syst Rehabil Eng 19(1):15鈥?4 CrossRef
    40. Schiff SJ (2012) Neural control engineering: the emerging intersection between control theory and neuroscience. MIT Press, Cambrige
    41. Schiff SJ, Sauer T (2008) Kalman filter control of a model of spatiotemporal cortical dynamics. BMC Neurosci 9(Suppl 1):O1 CrossRef
    42. Sch眉tt M, Claussen JC (2012) Desynchronizing effect of high-frequency stimulation in a generic cortical network model. Cogn Neurodyn 6(4):343鈥?51 CrossRef
    43. Tan Y, Dai HH, Huang D et al (2012) Unified iterative learning control schemes for nonlinear dynamic systems with nonlinear input uncertainties. Automatica 48(12):3173鈥?182 CrossRef
    44. Touboul J, Wendling F, Chauvel P et al (2011) Neural mass activity, bifurcations, and epilepsy. Neural Comput 23(12):3232鈥?286 CrossRef
    45. Ullah G, Schiff SJ (2009) Tracking and control of neuronal Hodgkin鈥揌uxley dynamics. Phys Rev E 79(4):040901 CrossRef
    46. Ullah G, Schiff SJ (2010) Assimilating seizure dynamics. PLoS Comput Biol 6(5):e1000776 CrossRef
    47. Van Rotterdam A, Lopes da Silva FH, Van den Ende J et al (1982) A model of the spatial鈥搕emporal characteristics of the alpha rhythm. Bull Math Biol 44(2):283鈥?05 CrossRef
    48. Voss HU, Timmer J, Kurths J (2004) Nonlinear dynamical system identification from uncertain and indirect measurements. Int J Bifurc Chaos 14(06):1905鈥?933 CrossRef
    49. Wang C, Zou J, Zhang J et al (2010) Feature extraction and recognition of epileptiform activity in EEG by combining PCA with ApEn. Cogn Neurodyn 4(3):233鈥?40 CrossRef
    50. Wendling F, Bellanger JJ, Bartolomei F et al (2000) Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern 83(4):367鈥?78 CrossRef
    51. Wendling F, Bartolomei F, Bellanger JJ et al (2002) Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci 15(9):1499鈥?508 CrossRef
    52. Xiong K, Zhang HY, Chan CW (2006) Performance evaluation of UKF-based nonlinear filtering. Automatica 42(2):261鈥?70 CrossRef
  • 刊物主题:Biomedicine general; Neurosciences; Computer Science, general; Artificial Intelligence (incl. Robotics); Biochemistry, general; Cognitive Psychology;
  • 出版者:Springer Netherlands
  • ISSN:1871-4099
文摘
A novel closed loop control framework is proposed to inhibit epileptiform wave in a neural mass model by external electric field, where the unscented Kalman filter method is used to reconstruct dynamics and estimate unmeasurable parameters of the model. Specifically speaking, the iterative learning control algorithm is introduced into the framework to optimize the control signal. In the proposed method, the control effect can be significantly improved based on the observation of the past attempts. Accordingly, the proposed method can effectively suppress the epileptiform wave as well as showing robustness to noises and uncertainties. Lastly, the simulation is carried out to illustrate the feasibility of the proposed method. Besides, this work shows potential value to design model-based feedback controllers for epilepsy treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700