Chemical Analysis of a "Miller-Type" Complex Prebiotic Broth
详细信息    查看全文
  • 作者:Eva Wollrab ; Sabrina Scherer…
  • 关键词:Origin to life ; Complex chemical mixture ; Mass spectrometry ; NMR ; Miller ; Urey experiment
  • 刊名:Origins of Life and Evolution of Biospheres
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:46
  • 期:2-3
  • 页码:149-169
  • 全文大小:2,254 KB
  • 参考文献:Anil Kumar M, Stephen Babu M, Srinivasulu K, Kiran Y, Suresh Reddy C (2007) Polyethylene glycol in water: A simple and environment friendly media for Strecker reaction. J Mol Catal A-Chem 265:268–271CrossRef
    Bax A, Summers M (1986) Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J Am Chem Soc 108:2093–2094CrossRef
    Bax A, Griffey R, Hawkins B (1983) Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J Magn Reson 55:301–315
    Bernstein MP, Sandford SA, Allamandola LJ, Gillette JS, Clemett SJ, Zare RN (1999) UV irradiation of polycyclic aromatic hydrocarbons in ices: Production of alcohols, quinones, and ethers. Science 283:1135–1138CrossRef PubMed
    Bonnet JY, Thissen R, Frisari M, Vuitton V, Quirico E, Orthous-Daunay FR, Dutuit O, Le Roy L, Fray N, Cottin H, Hörst SM, Yelle R (2013) Compositional and structural investigation of HCN polymer through high resolution mass spectrometry. Int J Mass Spectrom 354-355:193–203CrossRef
    Bothner-By AA, Stephens RL, Lee J, Warren CD, Jeanloz RW (1984) Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J Am Chem Soc 106:811–813CrossRef
    Braunschweiler L, Ernst R (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53:521–528
    Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38:105–115CrossRef PubMed
    Ferris JP, Hagan WJ (1984) HCN and chemical evolution: The possible role of cyano compounds in prebiotic sythesis. Tetrahedron 40:1093–1120CrossRef PubMed
    Ferus M, Nesvornýc D, Šponer J, Kubelíka P, Michalčíková R, Shestivská V, Šponer J, Civiš S (2014) High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc Natl Acad Sci 112:657–662
    Fox SW (1995) Thermal synthesis of amino acids and the origin of life. Geochim Cosmochim Acta 59:1213–1214CrossRef PubMed
    Greig M, Griffey RH (1995) Utility of organic bases for improved electrospray mass spectrometry of oligonucleotides. Rapid Commun Mass Spectrom 9:97–102CrossRef PubMed
    Groen J, Deamer DW, Kros A, Ehrenfreund P (2012) Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components. Orig Life Evol Biosph 42:295–306PubMedCentral CrossRef PubMed
    Gross JH (2011) Mass spectrometry: a textbook. Springer, BerlinCrossRef
    He C, Guangxin L, Upton KT, Imanaka H, Smith MA (2012) Structural investigation of HCN polymer isotopomers by solution-state multidimensional NMR. J Phys Chem A 116:4751–4759CrossRef PubMed
    Hertkorn N, Frommberger M, Witt M, Koch BP, Schmitt-Kopplin P, Perdue EM (2008) Natural organic matter and the event horizon of mass spectrometry. Anal Chem 80:8908–8919CrossRef PubMed
    Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404–404CrossRef PubMed
    Kalinoski HT, Hargiss LO (1992) Collision-induced dissociation mass spectrometry of nonionic surfactants following direct supercritical fluid injection. J Am Soc Mass Spectrom 3:150–158CrossRef PubMed
    Kendrick E (1963) A mass scale based on CH2=14.0000 for high resolution mass spectrometry of organic compounds. Anal Chem 35:2146–2154CrossRef
    Kiesewetter M, Shin E, Hedrick J (2010) Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43:2093–2107CrossRef
    Kim S, Kramer RW, Hatcher PG (2003a) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Anal Chem 75:5336–5344CrossRef PubMed
    Kim YJ, Uyama H, Kobayashi S (2003b) Regioselective synthesis of poly(phenylene) as a complex with poly(ethylene glycol) by template polymerization of phenol in water. Macromolecules 36:5058–5060CrossRef
    Kobayashi K, Kaneko T, Saito T, Oshima T (1998) Amino acid formation in gas mixtures by high energy particle irradiation. Orig Life Evol Biosph 28:155–165CrossRef PubMed
    Koch BP, Dittmar T (2006) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Spectrom 20:926–932CrossRef
    Lattimer RP (1992a) Tandem mass spectrometry of lithium-attachment ions from polyglycols. J Am Soc Mass Spectrom 3:225–234CrossRef PubMed
    Lattimer RP (1992b) Tandem mass spectrometry of poly(ethylene glycol) proton- and deuteron-attachment ions. Int J Mass Spectrom Ion Process 116:23–26CrossRef
    Lowe CU, Rees MW, Markham R (1963) Synthesis of complex organic compounds from simple precursors: formation of amino-acids, amino-acid polymers, fatty acids and purines from ammonium cyanide. Nature 199:219–222CrossRef PubMed
    Matthews CN (1975) The origin of proteins: Heteropolypeptides from hydrogen cyanide and water. Orig Life 6:155–162CrossRef PubMed
    Matthews CN, Minard RD (2006) Hydrogen cyanide polymers, comets and the origin of life. Faraday Discuss 133:393–401CrossRef PubMed
    McCollom TM, Ritter G, Simoneit BRT (1999) Lipid synthesis under hydrothermal conditions by fischer-tropsch-type reactions. Orig Life Evol Biosph 29:153–166CrossRef PubMed
    Menor-Salván C, Ruiz-Bermejo M, Osuna-Esteban S, Muñoz-Caro G, Veintemillas-Verdaguer S (2008) Synthesis of polycyclic aromatic hydrocarbons and acetylene polymers in ice: a prebiotic scenario. Chem Biodivers 5:2729–2739CrossRef PubMed
    Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529CrossRef PubMed
    Miller SL (1955) Production of some organic compounds under possible primitive earth conditions. J Am Chem Soc 77:2351–2361CrossRef
    Miller SL (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta 23:490–498
    Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci 99:14,628–14,631CrossRef
    Oró J (1960) Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Comm 2:407–412CrossRef
    Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194CrossRef PubMed
    Oró J (1963) Synthesis of organic compounds by electric discharge. Nature 197:862–867CrossRef
    Oró J, Kimball A, Fritz R, Master F (1959) Amino acid synthesis from formaldehyde and hydroxylamine. Arch Biochem Biophys 86:115–130CrossRef
    Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, Lazcano A, Bada JL (2011) Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci 108:5526–5531PubMedCentral CrossRef PubMed
    Piantini U, Sorensen OW, Ernst RR (1982) Multiple quantum filters for elucidating NMR coupling networks. J Am Chem Soc 104:6800–6801CrossRef
    Reemtsma T (2009) Determination of molecular formulas of natural organic matter molecules by (ultra-) high-resolution mass spectrometry: Status and needs. J Chromatogr A 1216:3687–3701CrossRef PubMed
    Ruiz-Bermejo M, de la Fuente JL, Rogero C, Menor-Salván C, Osuna-Esteban S, Martìn-Gago J (2012) New insights into the characterization of insoluble black HCN polymers. Chem Biodivers 9:25–40CrossRef PubMed
    Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: New perspectives for the origins of life. Chem Rev 114:285–366CrossRef PubMed
    Sanchez R, Ferris J, Orgel LE (1966a) Conditions for purine synthesis: Did prebiotic synthesis occur at low temperatures? Science 153:72–73CrossRef PubMed
    Sanchez R, Ferris J, Orgel LE (1966b) Cyanoacetylene in prebiotic synthesis. Science 154:784–785CrossRef PubMed
    Santamaria L, Fleischmann L (1966) Photochemical synthesis of amino acids from paraformaldehyde catalysed by inorganic agents. Experientia 22:430–431CrossRef PubMed
    Schlesinger G, Miller SL (1983) Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. J Mol Evol 19:376–382CrossRef PubMed
    Schramm S, Carré V, Scheffler JL, Aubriet F (2011) Analysis of mainstream and sidestream cigarette smoke particulate matter by laser desorption mass spectrometry. Anal Chem 83:133–142CrossRef PubMed
    Selby TL, Wesdemiotis C, Lattimer RP (1994) Dissociation characteristics of [M + X] + ions (X = H, Li, Na, K) from linear and cyclic polyglycols. Int J Mass Spectrom Ion Process 5:1081–1092
    Shaw GH (2008) Earth’s atmosphere - hadean to early proterozoic. Chem Erde 68:235–264CrossRef
    Simionescu CI, Totolin MI, Denes F (1976) Abiotic synthesis of some polysaccharide-like and polypeptide-like structures in cold plasma. Biosystems 8:153–158CrossRef PubMed
    Starks CM, Liotta CL, Halpern ME (1994) Phase-transfer catalysis–fundamentals, applications and industrial perspectives. Springer-Science+Business Media, Dordrecht
    Tian F, Kasting J, Zahnle K (2011) Revisiting HCN formation in earth’s early atmosphere. Earth Planet Sci Lett 308:417–423CrossRef
    Totten GE, Clinton NA (1998) Poly(ethylene glycol) and derivatives as phase transfer catalysts. J Macromol Sci-Pol R 38:77–142
    Trinks H, Schröder W, Biebricher CK (2005) Ice and the origin of life. Orig Life Evol Biosph 35:429–445CrossRef PubMed
    Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M (2009) Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681CrossRef PubMed
    Watson JT, Sparkman OD (2008) Introduction to mass spectrometry: Instrumentation, applications and strategies for data interpretation. Wiley, Chichester
    Willcott MR (2009) MestRe Nova. J Am Chem Soc 131:13,180–13,180CrossRef
    Wu D, Chen A, Johnson C (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson A 115:260–264CrossRef
    Yang CP, Ting CY (1993) Preparation of quaternary ammonium resin by epoxy resin and tertiary amine and its electrodeposition properties. J Appl Polym Sci 49:1019–1029CrossRef
  • 作者单位:Eva Wollrab (1) (6)
    Sabrina Scherer (1)
    Frédéric Aubriet (2)
    Vincent Carré (2)
    Teresa Carlomagno (3) (4) (5)
    Luca Codutti (3) (5)
    Albrecht Ott (1)

    1. Biologische Experimentalphysik, Universität des Saarlandes, Campus, Geb. B2 1, 66123, Saarbrücken, Germany
    6. Laboratory of Microbial Morphogenesis and Growth, Institut Pasteur, 75724, Paris Cedex 15, France
    2. Laboratoire de Chimie et Physique Multi-échelle des Milieux Complexes (LCP-A2MC), Université de Lorraine, 1 Boulevard Arago, 57078, Metz, France
    3. Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
    4. Helmoltz Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124, Braunschweig, Germany
    5. Centre of Biomolecular Drug Research, Leibniz University, Schneiderberg 38, 30167, Hannover, Germany
  • 刊物主题:Life Sciences, general; Astrophysics and Astroparticles; Earth Sciences, general; Astronomy, Observations and Techniques; Biochemistry, general;
  • 出版者:Springer Netherlands
  • ISSN:1573-0875
文摘
In a famous experiment Stanley Miller showed that a large number of organic substances can emerge from sparking a mixture of methane, ammonia and hydrogen in the presence of water (Miller, Science 117:528–529, 1953). Among these substances Miller identified different amino acids, and he concluded that prebiotic events may well have produced many of Life’s molecular building blocks. There have been many variants of the original experiment since, including different gas mixtures (Miller, J Am Chem Soc 77:2351–2361, 1955; Oró Nature 197:862–867, 1963; Schlesinger and Miller, J Mol Evol 19:376–382, 1983; Miyakawa et al., Proc Natl Acad Sci 99:14,628–14,631, 2002). Recently some of Miller’s remaining original samples were analyzed with modern equipment (Johnson et al. Science 322:404–404, 2008; Parker et al. Proc Natl Acad Sci 108:5526–5531, 2011) and a total of 23 racemic amino acids were identified. To give an overview of the chemical variety of a possible prebiotic broth, here we analyze a “Miller type” experiment using state of the art mass spectrometry and NMR spectroscopy. We identify substances of a wide range of saturation, which can be hydrophilic, hydrophobic or amphiphilic in nature. Often the molecules contain heteroatoms, with amines and amides being prominent classes of molecule. In some samples we detect ethylene glycol based polymers. Their formation in water requires the presence of a catalyst. Contrary to expectations, we cannot identify any preferred reaction product. The capacity to spontaneously produce this extremely high degree of molecular variety in a very simple experiment is a remarkable feature of organic chemistry and possibly prerequisite for Life to emerge. It remains a future task to uncover how dedicated, organized chemical reaction pathways may have arisen from this degree of complexity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700