Nitrite circumvents canonical cGMP signaling to enhance proliferation of myocyte precursor cells
详细信息    查看全文
  • 作者:Matthias Totzeck (1)
    Andreas Schicho (1)
    Pia Stock (1)
    Malte Kelm (1)
    Tienush Rassaf (1)
    Ulrike B. Hendgen-Cotta (1)

    1. Division of Cardiology
    ; Pulmonology and Vascular Medicine ; Department of Medicine ; Medical Faculty ; University Hospital Duesseldorf ; Moorenstrasse 5 ; 40225 ; D眉sseldorf ; Germany
  • 关键词:Nitrite ; Nitric oxide ; Myoblast ; Cyclic GMP
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:401
  • 期:1-2
  • 页码:175-183
  • 全文大小:900 KB
  • 参考文献:1. Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19:628鈥?33 CrossRef
    2. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666鈥?73 CrossRef
    3. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493鈥?95 CrossRef
    4. Zammit PS, Relaix F, Nagata Y et al (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824鈥?832 CrossRef
    5. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209鈥?38 CrossRef
    6. Schultz E, Jaryszak DL (1985) Effects of skeletal muscle regeneration on the proliferation potential of satellite cells. Mech Ageing Dev 30:63鈥?2 CrossRef
    7. Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421鈥?35 CrossRef
    8. Germani A, Di Carlo A, Mangoni A et al (2003) Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 163:1417鈥?428 CrossRef
    9. Tatsumi R, Hattori A, Ikeuchi Y et al (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13:2909鈥?918 CrossRef
    10. Chakravarthy MV, Booth FW, Spangenburg EE (2001) The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats. Int J Sport Nutr Exerc Metab 11:S44鈥揝48
    11. Zalin RJ (1987) The role of hormones and prostanoids in the in vitro proliferation and differentiation of human myoblasts. Exp Cell Res 172:265鈥?81 CrossRef
    12. Ohanna M, Sobering AK, Lapointe T et al (2005) Atrophy of S6K1(鈭?鈭? skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7:286鈥?94 CrossRef
    13. Halevy O, Cantley LC (2004) Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells. Exp Cell Res 297:224鈥?34 CrossRef
    14. Jones NC, Fedorov YV, Rosenthal RS et al (2001) ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186:104鈥?15 CrossRef
    15. Conejo R, Lorenzo M (2001) Insulin signaling leading to proliferation, survival, and membrane ruffling in C2C12 myoblasts. J Cell Physiol 187:96鈥?08 CrossRef
    16. Bennett AM, Tonks NK (1997) Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278:1288鈥?291 CrossRef
    17. Sarbassov DD, Ali SM, Kim DH et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296鈥?302 CrossRef
    18. Hara K, Maruki Y, Long X et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177鈥?89 CrossRef
    19. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310鈥?22 CrossRef
    20. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589鈥?594 CrossRef
    21. Madhusoodanan KS, Murad F (2007) NO-cGMP signaling and regenerative medicine involving stem cells. Neurochem Res 32:681鈥?94 CrossRef
    22. Lincoln TM, Wu X, Sellak H et al (2006) Regulation of vascular smooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependent protein kinase. Front Biosci 11:356鈥?67 CrossRef
    23. Pilz RB, Broderick KE (2005) Role of cyclic GMP in gene regulation. Front Biosci 10:1239鈥?268 CrossRef
    24. Soltow QA, Lira VA, Betters JL et al (2010) Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts. J Muscle Res Cell Motil 31:215鈥?25 CrossRef
    25. Wang L, Frizzell SA, Zhao X et al (2012) Normoxic cyclic GMP-independent oxidative signaling by nitrite enhances airway epithelial cell proliferation and wound healing. Nitric Oxide 26:203鈥?10 CrossRef
    26. Rammos C, Hendgen-Cotta UB, Sobierajski J et al (2014) Dietary nitrate reverses vascular dysfunction in old adults with moderately increased cardiovascular risk. J Am Coll Cardiol 63:1584鈥?585 CrossRef
    27. Heiss C, Meyer C, Totzeck M et al (2012) Dietary inorganic nitrate mobilizes circulating angiogenic cells. Free Radic Biol Med 52:1767鈥?772 CrossRef
    28. Lundberg JO, Gladwin MT, Ahluwalia A et al (2009) Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol 5:865鈥?69 CrossRef
    29. Hendgen-Cotta U, Grau M, Rassaf T et al (2008) Reductive gas-phase chemiluminescence and flow injection analysis for measurement of the nitric oxide pool in biological matrices. Methods Enzymol 441:295鈥?15 CrossRef
    30. Rassaf T, Totzeck M, Hendgen-Cotta UB et al (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601鈥?610 CrossRef
    31. Totzeck M, Hendgen-Cotta UB, Luedike P et al (2012) Nitrite regulates hypoxic vasodilation via myoglobin-dependent nitric oxide generation. Circulation 126:325鈥?34 CrossRef
    32. Hendgen-Cotta UB, Flogel U, Kelm M et al (2010) Unmasking the Janus face of myoglobin in health and disease. J Exp Biol 213:2734鈥?740 CrossRef
    33. Hendgen-Cotta UB, Kelm M, Rassaf T (2010) A highlight of myoglobin diversity: the nitrite reductase activity during myocardial ischemia-reperfusion. Nitric Oxide 22:75鈥?2 CrossRef
    34. Hendgen-Cotta UB, Merx MW, Shiva S et al (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA 105:10256鈥?0261 CrossRef
    35. Rassaf T, Flogel U, Drexhage C et al (2007) Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res 100:1749鈥?754 CrossRef
    36. Totzeck M, Hendgen-Cotta UB, Kelm M et al (2014) Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia. PLoS One 9:e105951 CrossRef
    37. Totzeck M, Hendgen-Cotta UB, Rammos C et al (2012) Assessment of the functional diversity of human myoglobin. Nitric Oxide 26:211鈥?16 CrossRef
    38. Hendgen-Cotta UB, Luedike P, Totzeck M et al (2012) Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation 126:1983鈥?992 CrossRef
    39. Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125鈥?131 CrossRef
    40. Leonhardt H, Rahn HP, Weinzierl P et al (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149:271鈥?80 CrossRef
    41. Ishiyama M, Miyazono Y, Sasamoto K et al (1997) A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 44:1299鈥?305 CrossRef
    42. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248鈥?54 CrossRef
    43. Ulibarri JA, Mozdziak PE, Schultz E et al (1999) Nitric oxide donors, sodium nitroprusside and / S-nitroso- / N-acetylpencillamine, stimulate myoblast proliferation in vitro. In Vitro Cell Dev Biol Anim 35:215鈥?18 CrossRef
    44. Rassaf T, Bryan NS, Maloney RE et al (2003) NO adducts in mammalian red blood cells: too much or too little? Nat Med 9:481鈥?82 CrossRef
    45. Rassaf T, Preik M, Kleinbongard P et al (2002) Evidence for in vivo transport of bioactive nitric oxide in human plasma. J Clin Investig 109:1241鈥?248 CrossRef
    46. Rassaf T, Kleinbongard P, Preik M et al (2002) Plasma nitrosothiols contribute to the systemic vasodilator effects of intravenously applied NO: experimental and clinical study on the fate of NO in human blood. Circ Res 91:470鈥?77 CrossRef
    47. Stamler JS, Simon DI, Jaraki O et al (1992) / S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci USA 89:8087鈥?091 CrossRef
    48. Weerapana E, Wang C, Simon GM et al (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790鈥?95 CrossRef
    49. Sarbassov DD, Ali SM, Sengupta S et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159鈥?68 CrossRef
    50. Luedike P, Hendgen-Cotta UB, Sobierajski J et al (2012) Cardioprotection through / S-nitros(yl)ation of macrophage migration inhibitory factor. Circulation 125:1880鈥?889 CrossRef
    51. Hamid SA, Totzeck M, Drexhage C et al (2010) Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res Cardiol 105:257鈥?66 CrossRef
    52. Ferri N (2012) AMP-activated protein kinase and the control of smooth muscle cell hyperproliferation in vascular disease. Vasc Pharmacol 56:9鈥?3 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Medical Biochemistry
    Oncology
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-4919
文摘
Skeletal muscle tissue has a remarkable high regenerative capacity. The underlying cellular events are governed by complex signaling processes, and the proliferation of skeletal myoblasts is a key initial event. The role of nitric oxide (NO) in cell cycle regulation is well-appreciated. Nitrite, an NO oxidation product, is a stable source for NO-like bioactivity particularly in cases when oxygen shortage compromises NO-synthases activity. Although numerous studies suggest that nitrite effects are largely related to NO-dependent signaling, emerging evidence also implicates that nitrite itself can activate protein pathways albeit under physiological, normoxic conditions. This includes a recently demonstrated cyclic guanosine monophosphate-(cGMP)-independent enhancement of endothelial cell proliferation. Whether nitrite itself has the potential to affect myoblast proliferation and metabolism with or without activation of the canonical NO/cGMP pathway to subsequently support muscle cell regeneration is not known. Here we show that nitrite increases proliferation and metabolic activity of murine cultured myoblasts dose-dependently. This effect is not abolished by the NO scavenger 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimida-zoline-1-oxyl-3 oxide and does not affect intracellular cGMP levels, implicating a cGMP-independent mechanism. Nitrite circumvents the rapamycin induced attenuation of myoblast proliferation and enhances mTOR activity. Our results provide evidence for a novel potential physiological and therapeutic approach of nitrite in skeletal muscle regeneration processes under normoxia independent of NO and cGMP.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700