The effect of bone marrow concentrate and hyperbaric oxygen therapy on bone repair
详细信息    查看全文
  • 作者:J. P. Grassmann (1)
    J. Schneppendahl (1)
    M. Sager (2)
    A. R. Hakimi (3)
    M. Herten (4)
    T. T. Loegters (1)
    M. Wild (1)
    M. Hakimi (1)
    J. Windolf (1)
    P. Jungbluth (1)

    1. Department of Trauma and Handsurgery
    ; Heinrich Heine University Hospital Duesseldorf ; Moorenstr. 5 ; 40225 ; Duesseldorf ; Germany
    2. Heinrich Heine University Hospital Duesseldorf
    ; Animal Research Institute ; Moorenstr. 5 ; 40225 ; Duesseldorf ; Germany
    3. Department of Oral Surgery
    ; Heinrich Heine University Hospital Duesseldorf ; Moorenstr. 5 ; 40225 ; Duesseldorf ; Germany
    4. Department of Orthopaedics
    ; Heinrich Heine University Hospital Duesseldorf ; Moorenstr. 5 ; 40225 ; Duesseldorf ; Germany
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:26
  • 期:1
  • 全文大小:2,328 KB
  • 参考文献:1. Marsell, R, Einhorn, TA (2011) The biology of fracture healing. Injury 42: pp. 551-555 CrossRef
    2. Schroeder, JE, Mosheiff, R (2011) Tissue engineering approaches for bone repair: concepts and evidence. Injury 42: pp. 609-613 CrossRef
    3. Einhorn, T (1991) Mechanisms of fracture healing. Hosp Pract (Off Ed) 26: pp. 41-45
    4. Gugala, Z, Gogolewski, S (1999) Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma 13: pp. 187-195 CrossRef
    5. Horner, EA, Kirkham, J, Wood, D, Curran, S, Smith, M, Thomson, B (2010) Long bone defect models for tissue engineering applications: criteria for choice. Tissue Eng Part B Rev. 16: pp. 263-271 CrossRef
    6. Dimitriou, R, Mataliotakis, GI, Angoules, AG, Kanakaris, NK, Giannoudis, PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 42: pp. S3-S15 CrossRef
    7. Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84-A(5):716鈥?0.
    8. Younger, EM, Chapman, MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3: pp. 192-195 CrossRef
    9. Sirin, Y, Olgac, V, Dogru-Abbasoglu, S, Tapul, L, Aktas, S, Soley, S (2011) The influence of hyperbaric oxygen treatment on the healing of experimental defects filled with different bone graft substitutes. Int J Med Sci. 8: pp. 114-125 CrossRef
    10. Jager, M, Herten, M, Fochtmann, U, Fischer, J, Hernigou, P, Zilkens, C (2011) Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 29: pp. 173-180 CrossRef
    11. Jager, M, Hernigou, P, Zilkens, C, Herten, M, Li, X, Fischer, J (2010) Cell therapy in bone healing disorders. Orthop Rev (Pavia). 2: pp. e20 CrossRef
    12. Jungbluth, P, Hakimi, AR, Grassmann, JP, Schneppendahl, J, Betsch, M, Kropil, P (2013) The early phase influence of bone marrow concentrate on metaphyseal bone healing. Injury. 44: pp. 1285-1294 CrossRef
    13. Dawson, JI, Smith, JO, Aarvold, A, Ridgway, JN, Curran, SJ, Dunlop, DG (2013) Enhancing the osteogenic efficacy of human bone marrow aspirate: concentrating osteoprogenitors using wave-assisted filtration. Cytotherapy. 15: pp. 242-252 CrossRef
    14. Kaigler, D, Wang, Z, Horger, K, Mooney, DJ, Krebsbach, PH (2006) VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 21: pp. 735-744 CrossRef
    15. Yang, S, Leong, KF, Du, Z, Chua, CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7: pp. 679-689 CrossRef
    16. Bennett, MH, Stanford, RE, Turner, R (2012) Hyperbaric oxygen therapy for promoting fracture healing and treating fracture non-union. Cochrane Database Syst Rev. 11: pp. CD004712
    17. Penttinen, R, Niinikoski, J, Kulonen, E (1972) Hyperbaric oxygenation and fracture healing. A biochemical study with rats. Acta Chir Scand. 138: pp. 39-44
    18. Jan, AM, Sandor, GK, Iera, D, Mhawi, A, Peel, S, Evans, AW (2006) Hyperbaric oxygen results in an increase in rabbit calvarial critical sized defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101: pp. 144-149 CrossRef
    19. Lu, C, Saless, N, Wang, X, Sinha, A, Decker, S, Kazakia, G (2013) The role of oxygen during fracture healing. Bone 52: pp. 220-229 CrossRef
    20. Lin, SS, Ueng, SW, Niu, CC, Yuan, LJ, Yang, CY, Chen, WJ (2014) Effects of hyperbaric oxygen on the osteogenic differentiation of mesenchymal stem cells. BMC Musculoskelet Disord. 15: pp. 56 CrossRef
    21. Thom, SR, Bhopale, VM, Velazquez, OC, Goldstein, LJ, Thom, LH, Buerk, DG (2006) Stem cell mobilization by hyperbaric oxygen. Am J Physiol Heart Circ Physiol 290: pp. H1378-H1386 CrossRef
    22. Kasten, P, Vogel, J, Geiger, F, Niemeyer, P, Luginbuhl, R, Szalay, K (2008) The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials 29: pp. 3983-3992 CrossRef
    23. Patel, S (2009) New dimensions in endodontic imaging: Part 2. Cone beam computed tomography. Int Endod J 42: pp. 463-475 CrossRef
    24. Kropil, P, Hakimi, AR, Jungbluth, P, Riegger, C, Rubbert, C, Miese, F (2012) Cone beam CT in assessment of tibial bone defect healing: an animal study. Acad Radiol. 19: pp. 320-325 CrossRef
    25. Haroon, ZA, Hettasch, JM, Lai, TS, Dewhirst, MW, Greenberg, CS (1999) Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J. 13: pp. 1787-1795
    26. Vermeulen, PB, Gasparini, G, Fox, SB, Colpaert, C, Marson, LP, Gion, M (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38: pp. 1564-1579 CrossRef
    27. Lorincz, T, Toth, J, Szendroi, M, Timar, J (2005) Microvascular density of breast cancer in bone metastasis: influence of therapy. Anticancer Res 25: pp. 3075-3081
    28. Herten, M, Grassmann, JP, Sager, M, Benga, L, Fischer, JC, Jager, M (2013) Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells. Vet Comp Orthop Traumatol. 26: pp. 34-41 CrossRef
    29. Fu, TS, Ueng, SW, Tsai, TT, Chen, LH, Lin, SS, Chen, WJ (2010) Effect of hyperbaric oxygen on mesenchymal stem cells for lumbar fusion in vivo. BMC Musculoskelet Disord. 11: pp. 52 CrossRef
    30. Wu, D, Malda, J, Crawford, R, Xiao, Y (2007) Effects of hyperbaric oxygen on proliferation and differentiation of osteoblasts from human alveolar bone. Connect Tissue Res 48: pp. 206-213 CrossRef
    31. Kirkeby, OJ (1991) Revascularisation of bone grafts in rats. J Bone Joint Surg Br 73: pp. 501-505
    32. Jungbluth, P, Wild, M, Grassmann, JP, Ar, E, Sager, M, Herten, M (2010) Platelet-rich plasma on calcium phosphate granules promotes metaphyseal bone healing in mini-pigs. J Orthop Res 28: pp. 1448-1455 CrossRef
    33. Jan, A, Sandor, GK, Brkovic, BB, Peel, S, Kim, YD, Xiao, WZ (2010) Effect of hyperbaric oxygen on demineralized bone matrix and biphasic calcium phosphate bone substitutes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109: pp. 59-66 CrossRef
    34. Janicki, P, Schmidmaier, G (2011) What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury. 42: pp. S77-S81 CrossRef
    35. Hernigou, P, Poignard, A, Beaujean, F, Rouard, H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87: pp. 1430-1437 CrossRef
    36. Hernigou, P, Mathieu, G, Poignard, A, Manicom, O, Beaujean, F, Rouard, H (2006) Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am 88: pp. 322-327
    37. Tateishi-Yuyama, E, Matsubara, H, Murohara, T, Ikeda, U, Shintani, S, Masaki, H (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360: pp. 427-435 CrossRef
    38. Friedenstein, AJ, Petrakova, KV, Kurolesova, AI, Frolova, GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6: pp. 230-247 CrossRef
    39. Owen, M, Friedenstein, AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136: pp. 42-60
    40. Castro-Malaspina, H, Gay, RE, Resnick, G, Kapoor, N, Meyers, P, Chiarieri, D (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56: pp. 289-301
    41. Calori, GM, Giannoudis, PV (2011) Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury. 42: pp. 1191-1193 CrossRef
    42. Kokemueller, H, Spalthoff, S, Nolff, M, Tavassol, F, Essig, H, Stuehmer, C (2010) Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application. Int J Oral Maxillofac Surg 39: pp. 379-387 CrossRef
    43. Carano, RA, Filvaroff, EH (2003) Angiogenesis and bone repair. Drug Discov Today. 8: pp. 980-989 CrossRef
    44. Gottrup, F (2004) Oxygen in wound healing and infection. World J Surg 28: pp. 312-315 CrossRef
    45. Brandi, ML, Collin-Osdoby, P (2006) Vascular biology and the skeleton. J Bone Miner Res 21: pp. 183-192 CrossRef
    46. Maes, C, Kobayashi, T, Selig, MK, Torrekens, S, Roth, SI, Mackem, S (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19: pp. 329-344 CrossRef
    47. Barth, E, Sullivan, T, Berg, E (1990) Animal model for evaluating bone repair with and without adjunctive hyperbaric oxygen therapy (HBO): comparing dose schedules. J Invest Surg 3: pp. 387-392 CrossRef
    48. Giannoudis, PV, Einhorn, TA, Schmidmaier, G, Marsh, D (2008) The diamond concept鈥攐pen questions. Injury. 39: pp. S5-S8 CrossRef
    49. Jacobsen, KA, Al-Aql, ZS, Wan, C, Fitch, JL, Stapleton, SN, Mason, ZD (2008) Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res 23: pp. 596-609 CrossRef
    50. Fok, TC, Jan, A, Peel, SA, Evans, AW, Clokie, CM, Sandor, GK (2008) Hyperbaric oxygen results in increased vascular endothelial growth factor (VEGF) protein expression in rabbit calvarial critical-sized defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105: pp. 417-422 CrossRef
    51. Sheikh, AY, Gibson, JJ, Rollins, MD, Hopf, HW, Hussain, Z, Hunt, TK (2000) Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg 135: pp. 1293-1297 CrossRef
    52. Rouwkema, J, Rivron, NC, Blitterswijk, CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26: pp. 434-441 CrossRef
    53. Jungbluth, P, Hakimi, M, Grassmann, JP, Schneppendahl, J, Kessner, A, Sager, M (2010) The progress of early phase bone healing using porous granules produced from calcium phosphate cement. Eur J Med Res 15: pp. 196-203
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Characterization and Evaluation Materials
    Polymer Sciences
    Metallic Materials
    Ceramics,Glass,Composites,Natural Materials
    Surfaces and Interfaces and Thin Films
  • 出版者:Springer Netherlands
  • ISSN:1573-4838
文摘
Neoangiogenesis represents an essential part of bone regeneration. Therefore the improvement of neovascularization is the subject of various research approaches. In addition autologous mesenchymal stem cells concentrate in combination with bone substitute materials have been shown to support bone regeneration. In a rabbit model we examined the proposed synergistic effect of hyperbaric oxygen therapy (HBOT) and bone marrow concentrate (BMC) with porous calcium phosphate granules (CPG) on neoangiogenesis and osseous consolidation of a critical- size defect. The animal groups treated with HBOT showed a significantly higher microvessel density (MVD) by immunhistochemistry. Furthermore HBOT groups presented a significantly larger amount of new bone formation histomorphometrically as well as radiologically. We conclude that the increase in perfusion as a result of increased angiogenesis may play a key role in the effects of HBOT and consequently promotes bone healing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700