Characterization of Endocarp Biomass and Extracted Lignin Using Pyrolysis and Spectroscopic Methods
详细信息    查看全文
  • 作者:Anne E. Harman-Ware (1) (2)
    Mark Crocker (1) (2)
    Robert B. Pace (1)
    Andrew Placido (1)
    Samuel Morton III (3)
    Seth DeBolt (4)

    1. Center for Applied Energy Research
    ; University of Kentucky ; 2540 Research Park Drive ; Lexington ; KY ; 40511 ; USA
    2. Department of Chemistry
    ; University of Kentucky ; Lexington ; KY ; 40506 ; USA
    3. Department of Engineering
    ; James Madison University ; Harrisonburg ; VA ; 22807 ; USA
    4. Department of Horticulture
    ; University of Kentucky ; Lexington ; KY ; 40546 ; USA
  • 关键词:Lignin ; Pyrolysis ; GC/MS ; Endocarp ; Extraction ; Formic acid
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 页码:350-368
  • 全文大小:2,317 KB
  • 参考文献:1. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552鈥?599 CrossRef
    2. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848鈥?89. doi:10.1021/ef0502397 CrossRef
    3. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34(1):29鈥?1. doi:10.1002/ceat.201000270 CrossRef
    4. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506鈥?23 CrossRef
    5. Pasangulapati V, Ramachandriya KD, Kumar A, Wilkins MR, Jones CL, Huhnke RL (2012) Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresour Technol 114(0):663鈥?69. doi:10.1016/j.biortech.2012.03.036 CrossRef
    6. Neves D, Thunman H, Matos A, Tarelho L, G贸mez-Barea A (2011) Characterization and prediction of biomass pyrolysis products. Prog Energ Combust 37(5):611鈥?30. doi:10.1016/j.pecs.2011.01.001 CrossRef
    7. Bahng M-K, Mukarakate C, Robichaud DJ, Nimlos MR (2009) Current technologies for analysis of biomass thermochemical processing: a review. Anal Chim Acta 651(2):117鈥?38. doi:10.1016/j.aca.2009.08.016 CrossRef
    8. Jiang G, Nowakowski DJ, Bridgwater AV (2010) Effect of the temperature on the composition of lignin pyrolysis products. Energy Fuels 24(8):4470鈥?475. doi:10.1021/ef100363c CrossRef
    9. Patwardhan PR, Brown RC, Shanks BH (2011) Understanding the fast pyrolysis of lignin. Chem Sus Chem 4(11):1629鈥?636. doi:10.1002/cssc.201100133 CrossRef
    10. Jegers HE, Klein MT (1985) Primary and secondary lignin pyrolysis reaction pathways. Ind Eng Chem Process Des Dev 24(1):173鈥?83. doi:10.1021/i200028a030 CrossRef
    11. Shen DK, Gu S, Luo KH, Wang SR, Fang MX (2010) The pyrolytic degredation of wood-derived lignin from the pulping process. Bioresour Technol 101:6136鈥?146 CrossRef
    12. Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of / Chlorella protothecoides. J Biotechnol 110(1):85鈥?3. doi:10.1016/j.jbiotec.2004.01.013 CrossRef
    13. Nunes CA, Lima CF, Barbosa LCA, Colodette JL, Gouveia AFG, Silverio FO (2010) Determination of / Eucalyptus spp lignin S/G ratio: a comparison between methods. Bioresour Technol 101:4056鈥?061 CrossRef
    14. Demirbas A (2002) Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energ Explor Exploit 20(1):105鈥?11. doi:10.1260/014459802760170420 CrossRef
    15. Mendu V, Shearin T, Campbell JE, Stork J, Jae J, Crocker M, Huber G, DeBolt S (2012) Global bioenergy potential from high-lignin agricultural residue. Proc Natl Acad Sci 109(10):4014鈥?019. doi:10.1073/pnas.1112757109 CrossRef
    16. McDonough TJ (1993) The chemistry of organosolv delignification. TAPPI J 76:186鈥?93
    17. Baptista C, Robert D, Duarte AP (2008) Relationship between lignin structure and delignification degree in / Pinus pinaster kraft pulps. Bioresour Technol 99(7):2349鈥?356. doi:10.1016/j.biortech.2007.05.012 CrossRef
    18. Dap谋虂a S, Santos V, Paraj贸 JC (2002) Study of formic acid as an agent for biomass fractionation. Biomass Bioenergy 22(3):213鈥?21. doi:10.1016/S0961-9534(01)00073-3 CrossRef
    19. Tu Q, Fu S, Zhan H, Chai X, Lucia LA (2008) Kinetic modeling of formic acid pulping of bagasse. J Agric Food Chem 56(9):3097鈥?101. doi:10.1021/jf0729659 CrossRef
    20. Zhang M, Qi W, Liu R, Su R, Wu S, He Z (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34(4):525鈥?32. doi:10.1016/j.biombioe.2009.12.018 CrossRef
    21. Erismann NM, Freer J, Baeza J, Dur谩n N (1994) Organosolv pulping-VII: delignification selectivity of formic acid pulping of / Eucalyptus grandis. Bioresour Technol 47(3):247鈥?56. doi:10.1016/0960-8524(94)90188-0 CrossRef
    22. Lieff M, Wright GF, Hibbert H (1939) Studies on lignin and related compounds. XL. The extraction of birch lignin with formic acid. J Am Chem Soc 61(6):1477鈥?482 CrossRef
    23. Villaverde JJ, Li J, Ek M, Ligero P, de Vega A (2009) Native lignin structure of / Miscanthus x / giganteus and its changes during acetic and formic acid fractionation. J Agric Food Chem 57(14):6262鈥?270. doi:10.1021/jf900483t CrossRef
    24. Li M-F, Sun S-N, Xu F, Sun R-C (2012) Formic acid based organosolv pulping of bamboo ( / Phyllostachys acuta): comparative characterization of the dissolved lignins with milled wood lignin. Chem Eng J 179:80鈥?9 CrossRef
    25. Mendu V, Harman-Ware AE, Crocker M, Jae J, Stork J, Morton S, Placido A (2011) Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnol Biofuels 4:43. doi:10.1186/1754-6834-4-43
    26. Harman-Ware AE, Crocker M, Kaur AP, Meier MS, Kato D, Lynn B (2013) Pyrolysis鈥揋C/MS of sinapyl and coniferyl alcohol. J Anal Appl Pyrol 99:161鈥?69. doi:10.1016/j.jaap.2012.10.001 CrossRef
    27. Hodgson EM, Nowakowski DJ, Shield I, Riche A, Bridgwater AV, Clifton-Brown JC, Donnison IS (2011) Variation in / Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. Bioresour Technol 102:3411鈥?418 CrossRef
    28. Rencoret J, Ralph J, Marques G, Guti茅rrez A, Mart铆nez 脕T, del R铆o JC (2013) Structural characterization of lignin isolated from coconut ( / Cocos nucifera) coir fibers. J Agric Food Chem 61(10):2434鈥?445. doi:10.1021/jf304686x CrossRef
    29. Rodr铆guez G, Lama A, Rodr铆guez R, Jim茅nez A, Guill茅n R, Fern谩ndez-Bola帽os J (2008) Olive stone an attractive source of bioactive and valuable compounds. Bioresour Technol 99(13):5261鈥?269. doi:10.1016/j.biortech.2007.11.027 CrossRef
    30. Siengchum T, Isenberg M, Chuang SSC (2013) Fast pyrolysis of coconut biomass鈥攁n FTIR study. Fuel 105:559鈥?65. doi:10.1016/j.fuel.2012.09.039 CrossRef
    31. Tsamba AJ, Yang W, Blasiak W (2006) Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Process Technol 87(6):523鈥?30. doi:10.1016/j.fuproc.2005.12.002 CrossRef
    32. Demirbas A (2006) Effect of temperature on pyrolysis products from four nut shells. J Anal Appl Pyrol 76(1鈥?):285鈥?89. doi:10.1016/j.jaap.2005.12.012 CrossRef
    33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedure
    34. International A (2007) ASTM Standard D1106-96: standard test method for acid-insoluble lignin in wood. ASTM International
    35. Del Rio JC, Gutierrez A, Martinez AT (2004) Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18:1181鈥?185 CrossRef
    36. Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097鈥?0107 CrossRef
    37. Friderichsen AV, Shin E-J, Evans RJ, Nimlos MR, Dayton DC, Ellison GB (2001) The pyrolysis of anisole (C6H5OCH3) using a hyperthermal nozzle. Fuel 80(12):1747鈥?755. doi:10.1016/S0016-2361(01)00059-X CrossRef
    38. Shin E-J, Nimlos MR, Evans RJ (2001) A study of the mechanisms of vanillin pyrolysis by mass spectrometry and multivariate analysis. Fuel 80(12):1689鈥?696. doi:10.1016/S0016-2361(01)00055-2 CrossRef
    39. Drage TC, Vane CH, Abbott GD (2002) The closed system pyrolysis of 尾-O-4 lignin substructure model compounds. Org Geochem 33:1523鈥?531 CrossRef
    40. Britt PF, Buchanan AC III, Thomas KB, Lee S-K (1995) Pyrolysis mechanisms of lignin: surface-immobilized model compound investigation of acid-catalyzed and free-radical reaction pathways. J Anal Appl Pyrol 33:1鈥?9 CrossRef
    41. Faravelli T, Frassoldati A, Migliavacca ER (2010) Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34:290鈥?01 CrossRef
    42. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79:277鈥?99 CrossRef
    43. Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27:562鈥?67 CrossRef
    44. Hu J, Shen D, Xiao R, Wu S, Zhang H (2013) Free-radical analysis on thermochemical transformation of lignin to phenolic compounds. Energy Fuels 27:285鈥?93 CrossRef
    45. Bozell JJ, O鈥橪enick CJ, Warwick S (2011) Biomass fractionation for the biorefinery: heteronuclear multiple quantum coherence-nuclear magnetic resonance investigation of lignin isolated from solvent fractionation of switchgrass. J Agric Food Chem 59:9232鈥?242 CrossRef
    46. Bauer S, Sorek H, Mitchell VD, Ib谩帽ez AB, Wemmer DE (2012) Characterization of / Miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition. J Agric Food Chem 60(33):8203鈥?212. doi:10.1021/jf302409d CrossRef
    47. Varhegyi G (2007) Aims and methods in non-isothermal reaction kinetics. J Anal Appl Pyrol 79:278鈥?88 CrossRef
    48. Varhegyi G, Bobaly B, Jakab E, Chen H (2011) Thermogravimetric study of biomass pyrolysis kinetics. a distributed activation energy model with prediction tests. Energy Fuels 25:24鈥?2 CrossRef
    49. Haykiri-Acma H, Yaman S, Kucukbayrak S (2010) Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Process Technol 91:759鈥?64 CrossRef
    50. Obst JR (1982) Guaiacyl and syringyl lignin composition in hardwood cell components. Holzforschung 36:143鈥?52 CrossRef
    51. Lan W, Liu C-F, Sun R-C (2011) Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction. J Agric Food Chem 59:8691鈥?701 CrossRef
    52. Del Rio JC, Rencoret J, Prinsen P, Martinez AT, Ralph J, Gutierrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60:5922鈥?935 CrossRef
    53. Yuan T-Q, Sun S-N, Xu F, Sun R-C (2011) Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J Agric Food Chem 59:10604鈥?0614 CrossRef
    54. Pu Y, Chen F, Ziebell A, Davison B, Ragauskas A (2009) NMR characterization of C3H and HCT down-regulated / Alfalfa lignin. Bioenerg Res 2(4):198鈥?08. doi:10.1007/s12155-009-9056-8 CrossRef
    55. Ralph J, Larry LL (2010) NMR of lignins. In: Lignin and lignans. CRC Press, p 137鈥?43. doi:10.1201/EBK1574444865-c5
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
Pyrolysis-GC/mass spectrometry (Py-GC/MS) and thermogravimetric analysis (TGA) was used to analyze the thermal decomposition of several endocarp sources, namely, coconut shells, walnut shells, peach pits, and olive pits, as well as their respective lignin fractions. To determine whether extraction procedures influenced pyrolysate composition and thermal decomposition processes, lignin was extracted from these feedstocks using two different procedures based on the use of formic acid and sulfuric acid (National Renewable Energy Laboratory (NREL) laboratory analytical procedure), after which the lignin-derived pyrolysates and TGA profiles were compared. Qualitative analysis of the distribution of pyrolysates provided predictive information about the structure and composition of the lignin in each sample. Results suggest that the lignin extract pyrolysates contained a different distribution of linkages and monomers in comparison to the non-extracted biomass, suggesting that lignin processing can influence bio-oil composition. Moreover, we identify the types of products obtainable by pyrolysis of these feedstocks and their lignin extracts. Heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy (HSQC NMR) and Fourier transform infrared spectroscopy (FTIR) were also used to elucidate the structures of the extracted lignin samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700