Parallel Lattice Boltzmann Computing and Applications in Core Sample Feature Evaluation
详细信息    查看全文
  • 作者:Jinfang Gao (1)
    Huilin Xing (1)
    Victor Rudolph (2)
    Qin Li (3)
    Sue D. Golding (1)

    1. School of Earth Sciences
    ; The University of Queensland ; St. Lucia ; Brisbane ; QLD ; 4072 ; Australia
    2. School of Chemical Engineering
    ; The University of Queensland ; St. Lucia ; Brisbane ; QLD ; 4072 ; Australia
    3. Environmental Engineering & Queensland Micro- and Nanotechnology Centre
    ; Griffith University ; Nathan ; QLD ; 4111 ; Australia
  • 关键词:3D heterogeneous porous media ; Fluid transport ; Massively parallel computing ; Lattice Boltzmann method ; Representative elementary volume
  • 刊名:Transport in Porous Media
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:107
  • 期:1
  • 页码:65-77
  • 全文大小:1,918 KB
  • 参考文献:1. Aaltosalmi, U.: Fluid flow in porous media with the lattice-Boltzmann method. Dissertion, University of Jyv盲skyl盲 (2005)
    2. Aharonov, E., Rothman, D.H.: Non-Newtonian flow (through porous media): a latticec-Boltzmann method. Geophys. Res. Lett. 20, 679鈥?82 (1993) CrossRef
    3. Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439鈥?72 (2010) CrossRef
    4. Boggs, S.: Principles of Sedimentology and Stratigraphy. Prentice Hall, New Jersey (1995)
    5. Carman, P.C.: Flow of gases through porous media. Butterworths Scientific Publications, London (1956)
    6. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329鈥?64 (1998) CrossRef
    7. Chen, Y., Zhu, K.: A study of the upper limit of solid scatters density for gray Lattice Boltzmann Method. Acta Mech. Sin. 24, 515鈥?22 (2008) CrossRef
    8. Dardis, O., Mccloskey, J.: Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media. Phys. Rev. E 57, 4834 (1998) CrossRef
    9. Ergun, S.: Flow experiments in studying kinetics. Ind. Eng. Chem. 47, 2075鈥?080 (1955) CrossRef
    10. Fan, Z., Qiu, F., Kaufman, A., Yoakum-stover, S.: GPU cluster for high performance computing. In: Proceedings of the 2004 ACM/IEEE conference on supercomputing, p. 47. IEEE Computer Society (2004)
    11. Farquhar, S., Pearce, J., Dawson, G., Golab, A., Sommacal , A., Kirste, D., Biddle, D., Golding, S.: A fresh approach to investigating CO \(_2\) storage: experimental CO \(_2\) -water鈥搑ock interactions in a low-salinity reservoir system. Chem. Geol. (2014)
    12. Golab, A., Ward, C.R., Permana, A., Lennox, P., Botha, P.: High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography, with special reference to modes of mineral occurrence. Int. J. Coal Geol. 113, 97鈥?08 (2013) CrossRef
    13. Green, W.J., Lee, G.F., Jones, R.A.: Clay-soils permeability and hazardous waste storage. J. (Water Pollution Control Federation) 54, 1347鈥?354 (1981)
    14. Guggenheim, S., Martin, R.: Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Miner. 43, 255鈥?56 (1995) CrossRef
    15. Guo, Z., Zhao, T.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002) CrossRef
    16. Guo, Z., Zheng, C., Shi, B.: An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14, 2007 (2002) CrossRef
    17. He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811 (1997) CrossRef
    18. He, Y., Wang, Y., Li, Q.: Lattice Boltzmann Method: Theory and Applications. Science Press, Beijing (2009)
    19. Hou, J., Li, Z., Zhang, S., Cao, X., Du, Q., Song, X.: Computerized tomography study of the microscopic flow mechanism of polymer flooding. Transp. Porous Media 79, 407鈥?18 (2009) CrossRef
    20. Joshi, A.S., Grew, K.N., Peracchio, A.A., Chiu, W.K.: Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode. J. Power Sources 164, 631鈥?38 (2007) CrossRef
    21. Kang, Q., Zhang, D., Chen, S.: Unified lattice Boltzmann method for flow in multiscale porous media. Phys. Rev. E 66, 056307 (2002) CrossRef
    22. Manwart, C., Aaltosalmi, U., Koponen, A., Hilfer, R., Timonen, J.: Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. Phys. Rev. E 66, 016702 (2002) CrossRef
    23. Mitchell, J.K., Hooper, D.R., Campanella, R.G.: Permeability of compacted clay. J. Soil Mech. Found. Div. 92 (1900)
    24. Nedkvitne, T., Karlsen, D.A., BJ脴rlykke, K., Larter, S.R.: Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea. Mar. Pet. Geol. 10, 255鈥?70 (1993) CrossRef
    25. Pan, C., Prins, J.F., Miller, C.T.: A high-performance lattice Boltzmann implementation to model flow in porous media. Comput. Phys. Commun. 158, 89鈥?05 (2004) CrossRef
    26. Pant, L.M., Mitra, S.K., Secanell, M.: Absolute permeability and Knudsen diffusivity measurements in PEMFC gas diffusion layers and micro porous layers. J. Power Sources 206, 153鈥?60 (2012) CrossRef
    27. Pohl, T., Deserno, F., Thurey, N., Rude, U., Lammers, P., Wellein, G., Zeiser, T.: Performance evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing architectures. In: Proceedings of the 2004 ACM/IEEE conference on Supercomputing, pp. 21. IEEE Computer Society (2004)
    28. Porter, B., Zauel, R., Stockman, H., Guldberg, R., Fyhrie, D.: 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J. Biomech. 38, 543鈥?49 (2005) CrossRef
    29. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: from Classical Methods to Modern Approaches. John Wiley & Sons, Hoboken (2012)
    30. Stockman, H.W., Li, C., Wilson, J.L.: A latticec-gas and lattice Boltzmann study of mixing at continuous fracture Junctions: importance of boundary conditions. Geophys. Res. Lett. 24, 1515鈥?518 (1997) CrossRef
    31. Succi, S.: The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)
    32. Sukop, M.C., Or, D.: Lattice Boltzmann method for modeling liquid鈥搗apor interface configurations in porous media. Water Resour. Res. 40 (2004)
    33. Sukop, M.C., Thorne, D.T.: LBM for macroscopic porous media. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, pp. 145鈥?55. Springer, Berlin (2006)
    34. Sukop, M.C., Thorne, Jr., D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, Berlin (2007)
    35. Tavenas, F., Jean, P., Leblond, P., Leroueil, S.: The permeability of natural soft clays. Part II: Permeability characteristics. Can. Geotech. J. 20, 645鈥?60 (1983) CrossRef
    36. Tian, Z.-W., Zou, C., Liu, H.-J., Guo, Z.-L., Liu, Z.-H., Zheng, C.-G.: Lattice Boltzmann scheme for simulating thermal micro-flow. Phys. A Stat. Mech. Appl. 385, 59鈥?8 (2007) CrossRef
    37. Tian, Z., Xing, H., Tan, Y., Gao, J.: A coupled lattice Boltzmann model for simulating reactive transport in CO \(_2\) injection. Physica A 403, 155鈥?64 (2014) CrossRef
    38. Wang, J., Zhang, X., Bengough, A.G., Crawford, J.W.: Domain-decomposition method for parallel lattice Boltzmann simulation of incompressible flow in porous media. Phys. Rev. E 72, 016706 (2005) CrossRef
    39. Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy鈥檚 law. Transp. Porous Media 1, 3鈥?5 (1986) CrossRef
    40. Worden, R., Morad, S.: Quartz cementation in oil field sandstones: a review of the key controversies. Quartz Cem. Sandstones (Special publications of international association of sedimentologists) 29, 1鈥?0 (2000) CrossRef
    41. Wu, J.S., Shao, Y.L.: Simulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time scheme. Int. J. Numer. Methods Fluids 46, 921鈥?37 (2004) CrossRef
    42. Yun-Liang, T., Gui-Rong, T., Ze, Z.: A modified LBM model for simulating gas seepage in fissured coal considering Klinkenberg effects and adsorbability鈥揹esorbability. Chin. Phys. Lett. 27, 014701 (2010) CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
Micro-CT scans with QEMSCAN mapping provide visualization of core samples to quantify heterogeneous physical properties important for subsurface flow including, as examples, pore size distribution and connectivity, mineral compositions, porosity and permeability, amongst many others. 3D high-resolution micro-CT scans can deliver a very high level of microstructures detail, which also implies enormous numerical data sets and associated computational processing load. It is, therefore, important to understand (1) the voxel resolution of micro-CT scans required to retain physical structure fidelity (e.g., mineral compositions, pore size and throats, and porosity and tortuosity), (2) the sensitivity of individual mineral property and voxel resolution on the directional permeability, and (3) the smallest sample size that provides reliable and representative transport calculations (e.g., directional permeability and connectivity). The lattice Boltzmann method is capable of simulating flow in both open pore spaces and porous media and is used here to allow for flow in multiple matrices (quartz aggregate and low-permeable clay matrix). As an application example, a permeability study of the Precipice Sandstone from the Chinchilla 4 well in the Surat Basin has been conducted. Regarding the Chinchilla sample, we established that (1) the composition ratio is relatively sensitive to voxel resolution: higher resolution imaging is required to retain narrow pore throats and excessively coarsened voxel resolutions result in severe loss of internal microstructures information; (2) both voxel resolutions and individual mineral properties affect flow dynamics, and the clay permeability slightly affects the whole permeability at \(\sim \) nD scale; (3) it is not feasible to define the accurate ratio of lattice nodes versus pore apertures for meeting the grid independence due to the complex sample tortuosity; and (4) the directional permeability approaches a constant value as the sample size increases to its representative elementary volume scale size (10 mm in this case). Significantly smaller sample sizes cannot retain the representative physical structure fidelity even using higher resolution imaging.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700