Evolution of morphology and microstructure of GaAs/GaSb nanowire heterostructures
详细信息    查看全文
  • 作者:Suixing Shi (1)
    Zhi Zhang (2)
    Zhenyu Lu (1)
    Haibo Shu (3)
    Pingping Chen (1)
    Ning Li (1)
    Jin Zou (2) (4)
    Wei Lu (1)

    1. National Laboratory for Infrared Physics
    ; Shanghai Institute of Technical Physics ; Chinese Academy of Sciences ; 500 Yu Tian Road ; Shanghai ; 200083 ; China
    2. Materials Engineering
    ; The University of Queensland ; St. Lucia ; Brisbane ; QLD 4072 ; Australia
    3. College of Optical and Electronic Technology
    ; China Jiliang University ; Hangzhou ; China
    4. Center for Microscopy and Microanalysis
    ; The University of Queensland ; St. Lucia ; Brisbane ; QLD 4072 ; Australia
  • 关键词:GaSb ; Heterostructure nanowire ; Core ; shell ; Wurtzite ; Molecular beam epitaxy ; 61.46.Km ; 81.07.Gf ; 68.37.Lp
  • 刊名:Nanoscale Research Letters
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:1
  • 全文大小:1,816 KB
  • 参考文献:1. Hu, JT, Odom, TW, Lieber, CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts Chem Res 32: pp. 435-45 CrossRef
    2. Mourik, V, Zuo, K, Frolov, SM, Plissard, SR, Bakkers, E, Kouwenhoven, LP (2012) Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336: pp. 1003-7 CrossRef
    3. Wernersson, LE, Thelander, C, Lind, E, Samuelson, L (2010) III-V nanowires鈥攅xtending a narrowing road. P IEEE 98: pp. 2047-60 CrossRef
    4. Dasgupta, NP, Sun, JW, Liu, C, Brittman, S, Andrews, SC, Lim, J (2014) 25th anniversary article: semiconductor nanowires synthesis, characterization, and applications. Adv Mater 26: pp. 2137-84 CrossRef
    5. Kim, J, Bahk, JH, Hwang, J, Kim, H, Park, H, Kim, W (2013) Thermoelectricity in semiconductor nanowires. Phys Status Solidi-Rapid Res Lett 7: pp. 767-80 CrossRef
    6. Hayne, M, Young, RJ, Smakman, EP, Nowozin, T, Hodgson, P, Garleff, JK (2013) The structural, electronic and optical properties of GaSb/GaAs nanostructures for charge-based memory. J Phys D Appl Phys 46: pp. 264001 CrossRef
    7. Ganjipour, B, Ek, M, Borg, BM, Dick, KA, Pistol, ME, Wernersson, LE (2012) Carrier control and transport modulation in GaSb/InAsSb core/shell nanowires. Appl Phys Lett 101: pp. 103501 CrossRef
    8. Yang, Z, Han, N, Wang, F, Cheung, H-Y, Shi, X, Yip, S-P (2013) Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors. Nanoscale 5: pp. 9671-6 CrossRef
    9. Kuo, C-H, Wu, J-M, Lin, S-J, Chang, W-C (2013) High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire. Nanoscale Res Lett 8: pp. 327 CrossRef
    10. Berg, JWG, Nadj-Perge, S, Pribiag, VS, Plissard, SR, Bakkers, E, Frolov, SM (2013) Fast spin-orbit qubit in an indium antimonide nanowire. Phys Rev Lett 110: pp. 066806 CrossRef
    11. Ganjipour, B, Nilsson, HA, Borg, BM, Wernersson, LE, Samuelson, L, Xu, HQ (2011) GaSb nanowire single-hole transistor. Appl Phys Lett 99: pp. 262104 CrossRef
    12. Dey, AW, Svensson, J, Borg, BM, Ek, M, Lind, E, Wernersson, LE (2013) GaSb nanowire pFETs for III-V CMOS. 2013 71st Annual Device Research Conference (DRC). pp. 13-4
    13. Ganjipour, B, Sepehri, S, Dey, AW, Tizno, O, Borg, BM, Dick, KA (2014) Electrical properties of GaSb/InAsSb core/shell nanowires. Nanotechnology 25: pp. 25201 CrossRef
    14. Balgos, MH, Jaculbia, R, Defensor, M, Afalla, JP, Ibanes, JJ, Bailon-Somintac, M (2014) Shell to core carrier-transfer in MBE-grown GaAs/AlGaAs core-shell nanowires on Si(100) substrates. J Lumin 155: pp. 27-31 CrossRef
    15. Zhou, HL, Hoang, TB, Dheeraj, DL, Helvoort, ATJ, Liu, L, Harmand, JC (2009) Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy. Nanotechnology 20: pp. 415701 CrossRef
    16. Salehzadeh, O, Kavanagh, KL, Watkins, SP (2013) Growth and strain relaxation of GaAs and GaP nanowires with GaSb shells. J Appl Phys 113: pp. 134309 CrossRef
    17. Glas, F, Harmand, JC, Patriarche, G (2007) Why does wurtzite form in nanowires of III-V zinc blende semiconductors?. Phys Rev Lett 99: pp. 146101 CrossRef
    18. Zhenyu, L, Zhi, Z, Pingping, C, Suixing, S, Luchi, Y, Chen, Z (2014) Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy. Appl Phys Lett 105: pp. 162102 CrossRef
    19. Mandl, B, Dick, KA, Kriegner, D, Keplinger, M, Bauer, G, Stangl, J (2011) Crystal structure control in Au-free self-seeded InSb wire growth. Nanotechnology 22: pp. 145603 CrossRef
    20. Gupta, N, Song, YP, Holloway, GW, Sinha, U, Haapamaki, CM, LaPierre, RR (2013) Temperature-dependent electron mobility in InAs nanowires. Nanotechnology 24: pp. 225202 CrossRef
    21. Tragardh, J, Persson, AI, Wagner, JB, Hessman, D, Samuelson, L (2007) Measurements of the band gap of wurtzite InAs1-xPx nanowires using photocurrent spectroscopy. J Appl Phys 101: pp. 123701 CrossRef
    22. Morkotter, S, Funk, S, Liang, M, Doblinger, M, Hertenberger, S, Treu, J (2013) Role of microstructure on optical properties in high-uniformity In1-xGaxAs nanowire arrays: evidence of a wider wurtzite band gap. Phys Rev B 87: pp. 205303 CrossRef
    23. Kriegner, D, Assali, S, Belabbes, A, Etzelstorfer, T, Holy, V, Schulli, T (2013) Unit cell structure of the wurtzite phase of GaP nanowires: X-ray diffraction studies and density functional theory calculations. Phys Rev B 88: pp. 115315 CrossRef
    24. Caroff, P, Dick, KA, Johansson, J, Messing, ME, Deppert, K, Samuelson, L (2009) Controlled polytypic and twin-plane superlattices in III-V nanowires. Nat Nanotechnol 4: pp. 50-5 CrossRef
    25. Algra, RE, Verheijen, MA, Borgstrom, MT, Feiner, LF, Immink, G, Enckevort, WJ (2008) Twinning superlattices in indium phosphide nanowires. Nature 456: pp. 369-72 CrossRef
    26. Bolinsson, J, Caroff, P, Mandl, B, Dick, KA (2011) Wurtzite-zincblende superlattices in InAs nanowires using a supply interruption method. Nanotechnology 22: pp. 265606 CrossRef
    27. Akiyama, T, Yamashita, T, Nakamura, K, Ito, T (2010) Band alignment tuning in twin-plane superlattices of semiconductor nanowires. Nano Lett 10: pp. 4614-8 CrossRef
    28. Mattias Borg, B, Wernersson, L-E (2013) Synthesis and properties of antimonide nanowires. Nanotechnology 24: pp. 202001 CrossRef
    29. Pozuelo, M, Zhou, H, Lin, S, Lipman, SA, Goorsky, MS, Hicks, RF (2011) Self-catalyzed growth of InP/InSb axial nanowire heterostructures. J Cryst Growth 329: pp. 6-11 CrossRef
    30. Jeppsson, M, Dick, KA, Wagner, JB, Caroff, P, Deppert, K, Samuelson, L (2008) GaAs/GaSb nanowire heterostructures grown by MOVPE. J Cryst Growth 310: pp. 4115-21 CrossRef
    31. Lu, ZY, Chen, PP, Liao, ZM, Shi, SX, Sun, Y, Li, TX (2013) Impact of growth parameters on the morphology and microstructure of epitaxial GaAs nanowires grown by molecular beam epitaxy. J Alloy Compd 580: pp. 82-7 CrossRef
    32. Mata, M, Magen, C, Caroff, P, Arbiol, J (2014) Atomic scale strain relaxation in axial semiconductor III-V nanowire heterostructures. Nano Lett 14: pp. 6614-20 CrossRef
    33. Hannon, JB, Kodambaka, S, Ross, FM, Tromp, RM (2006) The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440: pp. 69-71 CrossRef
    34. Allen, JE, Hemesath, ER, Perea, DE, Lensch-Falk, JL, Li, ZY, Yin, F (2008) High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol 3: pp. 168-73 CrossRef
    35. Moutanabbir, O, Isheim, D, Blumtritt, H, Senz, S, Pippel, E, Seidman, DN (2013) Colossal injection of catalyst atoms into silicon nanowires. Nature 496: pp. 78-82 CrossRef
    36. Wagner, RS, Ellis, WC (1964) Vapor鈥搇iquid鈥搒olid mechanism of single crystal growth. Appl Phys Lett 4: pp. 89 CrossRef
    37. Wacaser, BA, Dick, KA, Johansson, J, Borgstrom, MT, Deppert, K, Samuelson, L (2009) Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Adv Mater 21: pp. 153-65 CrossRef
    38. Lee, JS, Brittman, S, Yu, D, Park, H (2008) Vapor鈥搇iquid鈥搒olid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures. J Am Chem Soc 130: pp. 6252-8 CrossRef
    39. Dimakis, E, Lahnemann, J, Jahn, U, Breuer, S, Hilse, M, Geelhaar, L (2011) Self-assisted nucleation and vapor-solid growth of in as nanowires on bare Si(111). Crystal Growth Design 11: pp. 4001-8 CrossRef
    40. Dubrovskii, VG, Sibirev, NV, Cirlin, GE, Soshnikov, IP, Chen, WH, Larde, R (2009) Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires. Phys Rev B 79: pp. 205316 CrossRef
    41. Liu, XY, Liu, PB, Huang, H, Chen, CX, Jin, TN, Zhang, YF (2013) Growth and large-scale assembly of InAs/InP core/shell nanowire: effect of shell thickness on electrical characteristics. Nanotechnology 24: pp. 245306 CrossRef
    42. Rieger, T, Schapers, T, Grutzmacher, D, Lepsa, MI (2014) Crystal phase selective growth in GaAs/InAs core-shell nanowires. Crystal Growth Design 14: pp. 1167-74 CrossRef
    43. Ghalamestani, SG, Munshi, AM, Dheeraj, DL, Fimland, BO, Weman, H, Dick, KA (2013) Self-catalyzed MBE grown GaAs/GaAsxSb1-x core-shell nanowires in ZB and WZ crystal structures. Nanotechnology 24: pp. 405601 CrossRef
    44. Markov, IV (2006) Crystal growth for beginners: fundamentals of nucleation, crystal growth and epitaxy. World Scientific Publishing Co. Pte. Ltd., Singapore
    45. Moll, N, Kley, A, Pehlke, E, Scheffler, M (1996) GaAs equilibrium crystal shape from first principles. Phys Rev B 54: pp. 8844-55 CrossRef
    46. Wulff, GZ (1901) On the question of the rate of growth and dissolution of crystal surfaces. Kristallogr Mineral 34: pp. 449-530
    47. Plissard, SR, Slapak, DR, Verheijen, MA, Hocevar, M, Immink, GWG, Weperen, I (2012) From InSb nanowires to nanocubes: looking for the sweet spot. Nano Lett 12: pp. 1794-8 CrossRef
    48. Ghalamestani, SG, Ek, M, Ganjipour, B, Thelander, C, Johansson, J, Caroff, P (2012) Demonstration of defect-free and composition tunable GaxIn1-xSb nanowires. Nano Lett 12: pp. 4914-9 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
In this paper, we successfully grow GaAs/GaSb core-shell heterostructure nanowires (NWs) by molecular beam epitaxy (MBE). The as-grown GaSb shell layer forms a wurtzite structure instead of the zinc blende structure that has been commonly reported. Meanwhile, a bulgy GaSb nanoplate also appears on top of GaAs/GaSb core-shell NWs and possesses a pure zinc blende phase. The growth mode for core-shell morphology and underlying mechanism for crystal phase selection of GaAs/GaSb nanowire heterostructures are discussed in detail.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700