On Evgrafov–Fedoryuk’s theory and quadratic differentials
详细信息    查看全文
  • 作者:Boris Shapiro
  • 关键词:Spectral asymptotics ; Quadratic differentials ; Singular planar metric ; Geodesics ; Primary 34M40 ; 34E20 ; Secondary 34E10
  • 刊名:Analysis and Mathematical Physics
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:5
  • 期:2
  • 页码:171-181
  • 全文大小:457 KB
  • 参考文献:1.Alexandersson, P., Gabrielov, A.: On eigenvalues of the Schr?dinger operator with a complex-valued polynomial potential. CMFT 12(1), 119-44 (2012)MATH MathSciNet
    2.Baryshnikov, Yu.: On Stokes sets. In: New developments in singularity theory (Cambridge, 2000), pp. 65-6. NATO Sci. Ser. II Math. Phys. Chem., vol. 21. Kluwer, Dordrecht (2001)
    3.Birkhoff, G.D.: Quantum mechanics and asymptotic series. Bull. Am. Math. Soc. 32, 681-00 (1933)View Article MathSciNet
    4.Delabaere, E., Pham, F.: Unfolding the quartic oscillator. Ann. Phys. 261, 180-18 (1997)View Article MATH MathSciNet
    5.Eremenko, A., Gabrielov, A.: Analytic continuation of eigenvalues of a quartic oscillator. Commun. Math. Phys. 287(2), 431-57 (2009)View Article MATH MathSciNet
    6.Eremenko, A., Gabrielov, A.: Singular perturbation of polynomial potentials in the complex domain with applications to PT-symmetric families. Mosc. Math. J. 11(3), 473-03 (2011)MATH MathSciNet
    7.Evgrafov, M., Fedoryuk, M.: Asymptotic behavior of solutions of the equation \(w^{\prime \prime }(z)-p(z,\,\lambda )w(z)=0\) as \(\lambda \rightarrow \infty \) in the complex \(z\) -plane (Russian). Usp. Math. Nauk 21(1), 3-0 (1966)MATH
    8.Fedoruyk, M.: Asymptotic analysis. Linear Ordinary Differential Equations. Springer, Berlin (1993)
    9.Fedoryuk, M.: Asymptotics of the discrete spectrum of the operator \(w^{\prime \prime }(x)-\lambda ^2w(x)\) . Math. Sb. 68(1), 81-09 (1965)
    10.Fedoryuk, M.: One-dimensional scattering in quasiclassical approximation. Diff. Uravn. 1(5), 483-95 (1965)
    11.Fedoryuk, M.: Topology of Stokes lines for the 2nd order equations. Izv. AS USSR 29, 645-56 (1965)
    12.Fedoryuk, M.: Analytic spectral problems. Diff. Uravn. 26(2), 258-67 (1990)MathSciNet
    13.Hsieh, P.S., Sibuya, Y.: On the asymptotic integration of second order linear ordinary differential equation with polynomial coefficient. J. Math. Anal. Appl. 16, 84-03 (1966)View Article MATH MathSciNet
    14.Jenkins, J.A.: Univalent functions and conformal mapping. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie. Springer, Berlin (1958)
    15.Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn. Springer, Berlin (1994)
    16.Nevanlinna, R.: über Riemannsche Fl?chen mit endlich vielen Windungspunkten. Acta Math. 58, 295-73 (1932)View Article MathSciNet
    17.Shapere, A.D., Vafa, C.: BPS structure of Argyres–Douglas superconformal theories. hep-th/-910172
    18.Shin, K. C.: Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT -Symmetry, Symmetry, Integrability and Geometry: Methods and Applications, SIGMA 6, 015 (2010)
    19.Sibuya, Y.: Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient, Noth-Holland Math. Studies, vol. 18. North-Holland, Amsterdam (1974)
    20.Sibuya, Y.: Subdominant solutions of the differential equation\(y^{\prime \prime }-\lambda ^2(x-a_1)(x-a_2)..(x-a_m)y=0\) . Acta Math. 119(1), 235-72 (1967)View Article MATH MathSciNet
    21.Strebel, K.: Quadratic differentials. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1984)
    22.Wasow, W.: Linear turning point theory. Applied Mathematical Sciences. Springer, New York (1985)
  • 作者单位:Boris Shapiro (1)

    1. Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Analysis
    Mathematical Methods in Physics
  • 出版者:Birkh盲user Basel
  • ISSN:1664-235X
文摘
The purpose of this note is to recall the theory of the (homogenized) spectral problem for Schr?dinger equation with a polynomial potential and its relation with quadratic differentials. We derive from results of this theory that the accumulation rays of the eigenvalues of the latter problem are in \(1-1\)-correspondence with the short geodesics of the singular planar metrics induced by the corresponding quadratic differential. We prove that for a polynomial potential of degree \(d,\) the number of such accumulation rays can be any positive integer between \((d-1)\) and \(d \atopwithdelims ()2\).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700