The Dirichlet and the weighted metrics for the space of K?hler metrics
详细信息    查看全文
  • 作者:Simone Calamai ; Kai Zheng
  • 关键词:53C55 ; 53C22
  • 刊名:Mathematische Annalen
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:363
  • 期:3-4
  • 页码:817-856
  • 全文大小:658 KB
  • 参考文献:1.Arezzo, C., Tian, G.: Infinite geodesic rays in the space of K?hler potentials (English summary)
    2.Calabi, E.: Extremal K?hler metrics. II. Differential geometry and complex analysis, pp. 95-14. Springer, Berlin (1985)
    3.Calabi, E.: On K?hler manifolds with vanishing canonical class. Algebraic geometry and topology. In: A Symposium in Honor of S. Lefschetz, pp. 78-9. Princeton University Press, Princeton (1957)
    4.Calabi, E.: The variation of K?hler metrics. I. The structure of the space. II. A minimum problem. Bull. Am. Math. Soc. 60, 167-68 (1954)
    5.Calabi, E., Chen, X.X.: The space of K?hler metrics. II. J. Differ. Geom. 61(2), 173-93 (2002)MATH MathSciNet
    6.Calamai, S.: The Calabi metric for the space of K?hler metrics. Math. Ann. 353, 373-02 (2012)MATH MathSciNet CrossRef
    7.Calamai, S., Zheng, K.: Geodesics in the space of K?hler cone metrics. http://?arxiv.?org/?abs/-205.-056
    8.Cao, H.D.: Deformation of K?hler metrics to K?hler–Einstein metrics on compact K?hler manifolds. Invent. Math. 81(2), 359-72 (1985)MATH MathSciNet CrossRef
    9.Chen, X.X.: On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not. 12, 607-23 (2000)CrossRef
    10.Chen, X.X.: The space of K?hler metrics. J. Differ. Geom. 56(2), 189-34 (2000)MATH
    11.Chen, X.X.: Space of K?hler metrics. III. On the lower bound of the Calabi energy and geodesic distance. Invent. Math. 175(3), 453-03 (2009)MATH MathSciNet CrossRef
    12.Chen, X.X.: Space of K?hler metrics (IV)—on the lower bound of the K-energy. arXiv:-809.-081
    13.Chen, X.X., Zheng, K.: The pseudo-Calabi flow. J. Reine Angew. Math. 674, 195-51 (2013)MATH MathSciNet
    14.Donaldson, S.K.: Symmetric spaces, K?hler geometry and Hamiltonian dynamics. In: Northern California Symplectic Geometry Seminar, pp. 13-3. American Mathematical Society Translations (2), vol. 196. American Mathematical Society, Providence (1999)
    15.Ebin, D.G.: The manifold of Riemannian metrics. In: Chern et al. (eds.) Global analysis. Proceedings of Symposia in Pure and Applied Mathematics, pp. 11-0 (1970)
    16.Mabuchi, T.: \(K\) -energy maps integrating Futaki invariants. Tohoku Math. J. 38, 575-93 (1986)MATH MathSciNet CrossRef
    17.Mabuchi, T.: Some symplectic geometry on compact K?hler manifolds. Osaka J. Math. 24, 227-52 (1987)MATH MathSciNet
    18.Semmes, S.: Complex Monge–Ampère and symplectic manifolds. Am. J. Math. 114, 495-50 (1999)MathSciNet CrossRef
    19.Tian, G.: Canonical metrics in K?hler geometry. Notes taken by Meike Akveld. In: Lectures in Mathematics ETH Zrich, pp. vi+101. Birkhuser Verlag, Basel (2000)
    20.Yau, S.T.: On the Ricci curvature of a compact K?hler manifold and the complex Monge–Ampère equation. Commun. Pure Appl. Math. 31, 339-11 (1978)MATH CrossRef
  • 作者单位:Simone Calamai (1)
    Kai Zheng (2) (3)

    1. Dipartimento di Matematica e Informatica “Ulisse Dini- Università degli Studi di Firenze, Viale Morgagni, 67/a, 50134, Florence, Italy
    2. Institut Fourier, Université Joseph Fourier (Grenoble I), UMR 5582 CNRS-UJF, BP 74, 38402, Saint-Martin-d’Hères, France
    3. Institut für Differentialgeometrie, Leibniz Universit?t Hannover, Welfengarten 1, 30167, Hannover, Germany
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1807
文摘
In this work we study the intrinsic geometry of the space of K?hler metrics under various Riemannian metrics and the corresponding variational structures. The first part is on the Dirichlet metric. A motivation for the study of this metric comes from Chen and Zheng (J Reine Angew Math, 674:195-51, 2013); there, Chen and the second author showed that the pseudo-Calabi flow is the gradient flow of the \(K\)-energy when \(\mathcal {H}\) is endowed precisely with the Dirichlet metric. The second part is on the family of weighted metrics, whose distinguished element is the Calabi metric studied in Calamai (Math Ann 353:373-02, 2012). We investigate as well their geometric properties. Then we focus on the constant weight metric. We use it to give an alternative proof of Calabi’s uniqueness of the K?hler–Einstein metrics (cf. Theorem 5.9), when \(C_1\le 0\). We also introduce a new functional called \(G\)-functional and we prove that its gradient flow has long time existence and also converges to the K?hler–Einstein metric when \(C_1\le 0\) (cf. Theorem 5.10). Mathematics Subject Classification 53C55 53C22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700