X which, when ${X = [a,b] \subset E = \mathbb{R}}$ , Φ (x) =? f(x) is an ordinary single-valued continuous mapping, consist of the traditional “sign condition-f (a) f (b) ≤?0. When X is a convex subset of a normed space, this sign condition is expressed in terms of a tangency boundary condition ${\Phi (x) \cap T_{X}(x) \neq \emptyset}$ , where T X (x) is the tangent cone of convex analysis to X at ${x \in \partial X}$ . Naturally, in the absence of convexity or smoothness of the domain X, the tangency condition requires the consideration of suitable local approximation concepts of non-smooth analysis, which will be discussed in the paper in relationship to the solvability of general dynamical systems." />
On nonlinear inclusions in non-smooth domains
详细信息    查看全文
  • 作者:Hichem Ben-El-Mechaiekh (1)
  • 关键词:47H10 ; 47H04 ; 54C60 ; 34K21 ; 54C15 ; 54C55 ; 54C65 ; 65K10
  • 刊名:Arabian Journal of Mathematics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:1
  • 期:4
  • 页码:395-416
  • 全文大小:675KB
  • 参考文献:1. Altman M.: A fixed point theorem in Banach space, Bull. Polish Acad. Sci. 5, 19-2 (1957)
    2. Aubin J.P.: Analyse fonctionnelle non-linéaire et applications à l’équilibre économique. Ann. Sci. Math. Québec II, 5-7 (1978)
    3. Aubin J.P.: Viability Theory. Birkh?user, Boston (1991)
    4. Aubin J.P., Cellina A.: Differential Inclusions. Springer, Berlin (1984) CrossRef
    5. Aubin J.P., Da Prato G.: Nagumo’s viability theorem. Stoch. Anal. Appl. 13, 1-1 (1995) CrossRef
    6. Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkh?user, Boston (1990)
    7. Bhatia N.P., Szego G.P.: Stability Theory of Dynamical Systems. Springer, Berlin (1970) CrossRef
    8. Bellenger J.C.: Existence of maximizable quasiconcave functions on paracompact convex spaces. J. Math. Anal. Appl. 123, 333-38 (1987) CrossRef
    9. Ben-El-Mechaiekh, H.: Quelques principes topologiques en analyse convexe, thèse de doctorat, Université de Montréal (1987)
    10. Ben-El-Mechaiekh H.: Zeros for set-valued maps with non-compact domains. Math. Reports Acad. Sci. Canada XII, 125-30 (1990)
    11. Ben-El-Mechaiekh H.: Spaces and maps approximation and fixed points. J. Comput. Appl. Math. 113, 283-08 (2000)
    12. Ben-El-Mechaiekh H.: Equilibria for set-valued maps on non smooth domains. J. Fixed Point Theory Appl. 4, 177-82 (2008) CrossRef
    13. Ben-El-Mechaiekh H., Deguire P., Granas A.: Une alternative non-linéaire en analyse convexe et applications. C. R. Acad. Sci. Paris 295, 257-59 (1982)
    14. Ben-El-Mechaiekh H., Deguire P., Granas A.: Points fixes et co?ncidences pour les fonctions multivoques I (applications de Ky Fan). C. R. Acad. Sci. Paris 295, 337-40 (1982)
    15. Ben-El-Mechaiekh H., Kryszewski W.: Equilibrium for perturbations of upper hemicontinuous set-valued maps by convex processes. Georgian Math. J. 3, 201-15 (1996) CrossRef
    16. Ben-El-Mechaiekh H., Kryszewski W.: Equilibres dans les ensembles non convexes. C. R. Acad. Sci. Paris 320, 573-76 (1995)
    17. Ben-El-Mechaiekh H., Kryszewski W.: Equilibria of set-valued maps on non convex domains. Trans. Am. Math. Soc. 349, 4159-179 (1997) CrossRef
    18. Bebernes W., Schuur I.D.: The Wa?ewski topological method for contingent equations. Ann. Mat. Pura Appl. 87, 271-78 (1970) CrossRef
    19. Bolzano, B.: Rein analytischer beweis des lehrsatzes dass zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewaehren, wenigstens eine reele Wurzel der Gleichung liege. Prague (1817). English translation in Russ, S.B.: A translation of Bolzano’s paper on the Intermediate Value Theorem. Hist. Math. 7, 156-85 (1980)
    20. Bonisseau J.M., Cornet B.: Fixed point theorems and Morse’s lemma for Lipschitzian functions. J. Math. Anal. Appl. 146, 318-32 (1990) CrossRef
    21. Borsuk, K.: Theory of Retracts. Monografle Matematyczne 44, Warszawa (1967)
    22. Bounkhel M., Jofré A.: Subdifferential stability of the distance function and its applications to non convex economies and equilibrium. J. Nonlinear Convex Anal. 5, 331-47 (2004)
    23. Bouligand H.: Sur les surfaces dépourvues de points hyperlimités. Ann. Soc. Polon. Math. 9, 32-1 (1930)
    24. Browder F.: The fixed point theory of multi-valued mappings in topological vector spaces. Math. Ann. 177, 283-01 (1968) CrossRef
    25. Buckdahn R., Quincampoix M., Rascanu A.: Propriétés de viabilité pour des équations différentielles stochastiques rétrograde et applications à des équations aux dérivées partielles. C. R. Acad. Sci. Paris 325, 1159-162 (1997) CrossRef
    26. Carj?, O.; Vrabie, I.I.: Differential equations on closed sets. In: Canada, A.; Drabek, P.; Fonda, A. (eds.) Handbook of Differential Equations, chap. 3, vol. 2, pp. 147-38. Elsevier, North-Holland (2005)
    27. Cellina A.: A theorem on the approximation of compact valued mappings. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 47, 429-33 (1969)
    28. Clarke F.H., Ledyaev Y.S., Stern R.J.: Fixed points and equilibria in non convex sets. Nonlinear Anal. TMA 25, 145-61 (1995) CrossRef
    29. Cornet B.: Paris avec handicap et théorème de surjectivité de correspondances. C. R. Acad. Sci. Paris 281, 479-82 (1975)
    30. Cornet B.: Euler characteristic and fixed point theorems. Positivity 6, 243-60 (2002) CrossRef
    31. Cornet B., Czarnecki M.O.: Existence of generalized equilibria of correspondences. Nonlinear Anal. TMA 44, 555-74 (2001) CrossRef
    32. ?wiszewski A., Kryszewski W.: Homotopy invariants for tangent vector fields on closed sets. Nonlinear Anal. TMA 65, 175-09 (2006) CrossRef
    33. Deimling K.: Mutivalued Differential Equations. Walter de Gruyter, Berlin (1992) CrossRef
    34. Dinca, G.; Mahwin, J.: Brouwer Degree and Applications. Preprint. http://www.ann.jussieu.fr/~smets/ULM/Brouwer_Degree_and_applications.pdf (2009)
    35. Fan, K.: Extensions of two fixed point theorems of F. E. Browder. Math. Z. 112, 234-40 (1969)
    36. Fan K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III., pp. 103-13. Academic Press, New York (1972)
    37. Fan K.: Some properties of convex sets related to fixed point theorems. Math. Ann. 266, 519-37 (1984) CrossRef
    38. Frankoswska H., Plaskacz S., Rzezuchowski T.: Théorèmes de viabilité mesurable et l’équation d’Hamilton-Jacobi-Bellman. C. R. Acad. Sci. Paris 315, 131-34 (1992)
    39. Grabiner J.V.: Cauchy and Bolzano: tradition and transformation in the history of mathematics. In: Mendelsohn, E. (ed.) Transformation and Tradition in the Sciences., pp. 105-24. Cambridge University Press, Cambridge (1984)
    40. Gudovich A., Kamenskii M., Quincampoix M.: Existence of equilibria of set-valued maps on bounded epi-Lipschitz domains in Hilbert spaces without invariance conditions. Nonlinear Anal. TMA 72, 262-76 (2010) CrossRef
    41. Hadamard, J.: Sur quelques applications de l’indice de Kronecker. In: Tannery, J. (ed.) Introduction à la théorie des fonctions d’une variable, 2nd edn. vol. 2. Hermann, Paris (1910)
    42. Haddad G.: Monotone viable trajectories for functional differential inclusions. J. Differ. Equ. 42, 1-4 (1981) CrossRef
    43. Halpern, B.: Fixed-point theorems for outward maps. Doctoral Thesis, UCLA (1965)
    44. Halpern, B.: A general fixed-point theorem. In: Proceedings of the Amer. Math. Soc. Symposium on Non-Linear Functional Analysis, Chicago (1968)
    45. Halpern B.: Fixed point theorems for set-valued maps in infinite dimensional spaces. Math. Ann. 189, 87-8 (1970) CrossRef
    46. Halpern B., Bergman G.: A fixed-point theorem for inward and outward maps. Trans. Am. Math. Soc. 130, 353-58 (1968) CrossRef
    47. Hu S.T.: Theory of Retracts. Wayne State University Press, Detroit (1965)
    48. Hu, S.; Papageorgiou, S.N.: Handbook of Multivalued Analysis, vol. I: Theory and vol. II: Applications. Kluwer, Dordrecht (1997)
    49. Kamenskii M., Quincampoix M.: Existence of fixed points on compact epi-Lipschitz sets without invariance conditions. Fixed Point Theory Appl. 3, 267-79 (2005)
    50. Krasnoselsky M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. State Publishing House, Moscow (1956)
    51. Mederski, J.: Equilibria of non convex valued maps under constraints. J. Math. Anal. Appl. (2011, in press)
    52. Michael E.: Continuous selections. Ann. Math. 63, 361-82 (1956) CrossRef
    53. Miranda C.: Un-osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. (2) 3, 5- (1941)
    54. Mordukhovich B.: Variational Analysis and Generalized Differentiation, vols. I, II. Springer, Berlin (2006)
    55. Moreau J.J.: Décomposition orthogonale d’un espace hilbertien selon deux c?nes mutuellement polaires. C. R. Acad. Sci. 255, 238-40 (1962)
    56. Nagumo M.: Uber die lage der intergralkurven gewōhnlicher differentialgleichung. Proc. Phys. Math. Soc. Japan 24, 551-59 (1942)
    57. Plaskacz S.: On the solution sets of differential inclusions. Boll. Un. Mat. Ital. (7) 6A, 387-94 (1992)
    58. Poincaré H.: Sur certaines solutions particulières du problème des trois corps. C. R. Acad. Sci. Paris 97, 251-52 (1883)
    59. Poliquin R.A., Rockafellar R.T., Thibault L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231-249 (2000) CrossRef
    60. Rothe E.: Zur Theorie der topologischen Ortnung und der Vektorfelder in Banachschen Raumen. Compos. Math. 5, 177-97 (1937)
    61. Rockafellar R.T.: Clarke’s tangent cones and boundaries of closed sets in ${\mathbf{R}^{n}}$ . Nonlinear Anal. 3, 145-54 (1979) CrossRef
    62. Severi F.: Su alcune questioni di topologia infinitesimale. Ann. Polon. Soc. Math. 9, 97-08 (1930)
    63. Shinbrot M.: A fixed point theorem and some applications. Arch. Ration. Mech. Anal. 17, 255-71 (1964) CrossRef
    64. Shi S.: Nagumo type condition for partial differential inclusions. Nonlinear Anal. TMA 12, 951-67 (1988) CrossRef
    65. Ursescu, L.: Tangent sets and differentiable functions. In: Mathematical Control Theory (Zakopane, 1974). Banach Center Publications, vol. 1, pp. 151-55. PWN-Polish Scientific Publishers, Warszawa (1976)
    66. Yamamuro S.: Some fixed point theorems in locally convex linear spaces. Yokohama Math. J. 11, 5-2 (1963)
    67. Yang G.-S., Yuan G.X.-Z.: A necessary and sufficient condition for upper hemicontinuous set-valued mappings without compact-values being upper demicontinuous. Proc. Am. Math. Soc. 126, 3539-544 (1998) CrossRef
  • 作者单位:Hichem Ben-El-Mechaiekh (1)

    1. Department of Mathematics, Brock University, St. Catharines, ON, L2S 3A1, Canada
  • ISSN:2193-5351
文摘
This paper reviews the old and new landmark extensions of the famous intermediate value theorem (IVT) of Bolzano and Poincaré to a set-valued operator ${\Phi : E \supset X \rightrightarrows E}$ defined on a possibly non- convex, non-smooth, or even non-Lipschitzian domain X in a normed space E. Such theorems are most general solvability results for nonlinear inclusions: ${\exists x_{0} \in X}$ with ${0 \in \Phi (x_{0}).}$ Naturally, the operator Φ must have continuity properties (essentially upper semi- or hemi-continuity) and its values (assumed to be non-empty closed sets) may be convex or have topological properties that extend convexity. Moreover, as the one-dimensional IVT simplest formulation tells freshmen calculus students, to have a zero, the mapping must also satisfy “direction conditions-on the boundary ?em class="a-plus-plus">X which, when ${X = [a,b] \subset E = \mathbb{R}}$ , Φ (x) =? f(x) is an ordinary single-valued continuous mapping, consist of the traditional “sign condition-f (a) f (b) ≤?0. When X is a convex subset of a normed space, this sign condition is expressed in terms of a tangency boundary condition ${\Phi (x) \cap T_{X}(x) \neq \emptyset}$ , where T X (x) is the tangent cone of convex analysis to X at ${x \in \partial X}$ . Naturally, in the absence of convexity or smoothness of the domain X, the tangency condition requires the consideration of suitable local approximation concepts of non-smooth analysis, which will be discussed in the paper in relationship to the solvability of general dynamical systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700