The Formation of Sodium Nanoparticles in Alkali-Silicate Glass Under the Action of the Electron Beam and Thermal Treatments
详细信息    查看全文
  • 作者:E.S. Bochkareva ; N.V. Nikonorov ; O.A. Podsvirov ; M.A. Prosnikov ; A.I. Sidorov
  • 关键词:Sodium nanoparticle ; Sodium ; silicate glass ; Electron beam ; Plasmon resonance ; Dipole quasi ; static approximation ; 64.70.ph ; 81.16rf ; 78.67.Hc ; 61.80.Fe
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:241-246
  • 全文大小:1,786 KB
  • 参考文献:1.Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314. doi:10.​1016/​j.​physrep.​2004.​11.​001 CrossRef
    2.Chakraborty P (1998) Metal nanoclusters in glasses as non-linear photonic materials. J Mater Sci 33:2235–2249CrossRef
    3.Hamanaka Y, Nakamura A, Omi S, Del Fatti N, Vallee F, Flytzanis C (1999) Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass. Appl Phys Lett 75:1712–1714CrossRef
    4.Dotsenko AV, Glebov LB, Tsekhomsky VA (1998) Physics and chemistry of photochromic glasses. CRC Press LLC, U.S.A
    5.Panysheva EI, Tunimanova IV, Tsekhomsky VA (1990) A study of coloring in polychromatic glasses. Glass Phys Chem 16:239–244
    6.Nikonorov NV, Panisheva EI, Tunimanova IV, Chucharev AV (2001) Influence of glass composition on the refractive index change upon photothermoinduced crystallization. Glass Phys Chem 27:241–249CrossRef
    7.Nikonorov NV, Sidorov AI, Tsekhomskii VA (2010) Silver nanoparticles in oxide glasses: technologies and properties. In Silver Nanoparticles. Ed. by D.P. Perez. InTech. Croatia 10:177–200. doi:10.​5772/​8506
    8.Kriebig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRef
    9.Kolobkova EV, Nikonorov NV (2015) Metal sodium nanoparticles in fluorophosphate glasses. Alloys Comp 637:545–551CrossRef
    10.Nikonorov NV, Sidorov AI, Tsekhomsky VA, Nashchekin AV, Usov OA, Podsvirov OA, Poplevkin SV (2009) Electron-beam modification of the near-surface layers of photosensitive glasses. Techn Phys Lett 35:309–311CrossRef
    11.Vostokov AV, Ignatiev AI, Nikonorov NV, Podsvirov OA, Sidorov AI, Nashchekin AV, Sokolov RV, Usov OA, Tsekhomsky VA (2009) Effect of electron irradiation on the formation of silver nanoclusters in photothermorefractive glasses. Techn Phys Lett 35:812–814CrossRef
    12.Nashchekin AV, Usov OA, Sidorov AI, Podsvirov OA, Kurbatova NV, Tsekhomsky VA, Vostokov AV (2009) SPR of Ag nanoparticles in a photothermochromic glasses. Proc SPIE 7394:73942J-1-6. doi:10.​1117/​12.​825988
    13.Podsvirov OA, Ignatiev AI, Nashchekin AV, Nikonorov NV, Sidorov AI, Tsekhomskii VA, Usov OA, Vostokov AV (2010) Modification of Ag containing photo-thermo-refractive glasses induced by electron-beam irradiation. Nucl Instr Meth in Phys Res B 268:3103–3106CrossRef
    14.Podsvirov OA, Sidorov AI, Tsekhomskii VA, Vostokov AV (2010) Formation of copper nanocrystals in photochromic glasses under electron irradiation and heat treatment. Phys Sol St 52:1906–1909CrossRef
    15.Ignat’ev AI, Nashchekin AV, Nevedomskii VM, Podsvirov OA, Sidorov AI, Solov’ev AP, Usov OA (2011) Formation of silver nanoparticles in photothermorefractive glasses during electron irradiation. Techn Phys 56:662–667CrossRef
    16.Brunov VS, Podsvirov OA, Sidorov AI, Churaev DV (2014) Formation of silver thin films and nanoparticles inside and on the surface of silver-containing glasses by electron irradiation. Techn Phys 59:1215–1219CrossRef
    17.Nashchekin AV, Nevedomsky VN, Usov OA, Podsvirov OA, Sidorov AI (2011) Self-assembling of silver nanoparticles in glasses under electron beam irradiation. Int J of Nanosci 10:1265–1268CrossRef
    18.Brunov VS, Podsvirov OA, Sidorov AI, Prosnikov MA (2014) Dissolution of a silver film in silicon glasses under electron bombardment. Techn Phys 59:1863–1868CrossRef
    19.Podsvirov OA, Sidorov AI, Churaev DV (2014) Specific features of the formation of optical waveguides in silicate glass at high energy and doze of electron irradiation. Techn Phys 59:1674–1678CrossRef
    20.Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, Oxford
    21.Tervonen A, Honkanen S, Leppihalme MJ (1987) Control of ion-exchanged waveguide profiles with Ag thin-film sources. Appl Phys 62:759–763CrossRef
    22.Touzin M, Goeriot D, Guerret-Piecort C, Juve D, Treheux D, Fitting H-J (2006) Electron beam charging of insulators: a self-consistent flight-drift model. J Appl Phys 99:114110-1-14CrossRef
    23.Inagaki T, Arakawa ET, Birkhoff RD, Williams MW (1976) Optical properties of liquid Na between 0.6 and 3.8 eV. Phys Rev B 13:5610–5612CrossRef
    24.Schulz LG (1954) The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k. JOSA 44:357–362CrossRef
    25.Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic press, San Diego, USA
    26.Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. John Wiley & Sons, New York
    27.Yaws CL (1999) Chemical properties handbook. McGraw-Hill Education, New York
    28.Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) Enhanced optical properties of metal‐coated nanoparticles. J Appl Phys 73:1043–1048CrossRef
  • 作者单位:E.S. Bochkareva (1)
    N.V. Nikonorov (1)
    O.A. Podsvirov (2)
    M.A. Prosnikov (3)
    A.I. Sidorov (1)

    1. ITMO University, Kronverksky ave., 49, 197101, St. Petersburg, Russian Federation
    2. St. Petersburg Polytechnical University, Polytechnicheskaya str., 29, 195251, St. Petersburg, Russian Federation
    3. Ioffe Physical-Technical Institute, Russian Academy of Sciences, Polytechnicheskaya str., 26, 194021, St. Petersburg, Russian Federation
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
It is shown experimentally that the processing of the sodium-containing silicate glasses with the electron beam with electron energy 35 keV and dozes 20–65 mC/cm2 and the subsequent thermal treatment above the glass transition temperature result in the formation of the metallic sodium nanoparticles under the glass surface that manifest themselves in the plasmon resonance absorption band in the 405–410 nm spectral region. The main mechanisms of this effect are the field migration of the positive sodium ions into the negatively charged region under the glass surface, produced by the thermalized electrons, reduction of sodium ions by the thermalized electrons, and the nanoparticles growth as a result of thermal diffusion of the sodium atoms during the thermal treatment. The computer simulations in the dipole quasi-static approximation have shown that the most realistic model of the nanoparticle structure is the solid or liquid sodium core with two shells—the inner shell consisting of sodium oxide and the external one being vacuum or gas. Keywords Sodium nanoparticle Sodium-silicate glass Electron beam Plasmon resonance Dipole quasi-static approximation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700